Physiological effects of two driving pressure-based methods to set positive end-expiratory pressure during one lung ventilation

Savino Spadaro, Salvatore Grasso, Dan Stieper Karbing, Giuseppe Santoro, Giorgio Cavallesco, Pio Maniscalco, Francesca Murgolo, Rosa Di Mussi, Riccardo Ragazzi, Stephen Edward Rees, Carlo Alberto Volta, Alberto Fogagnolo, Savino Spadaro, Salvatore Grasso, Dan Stieper Karbing, Giuseppe Santoro, Giorgio Cavallesco, Pio Maniscalco, Francesca Murgolo, Rosa Di Mussi, Riccardo Ragazzi, Stephen Edward Rees, Carlo Alberto Volta, Alberto Fogagnolo

Abstract

During one-lung ventilation (OLV), titrating the positive end-expiratory pressure (PEEP) to target a low driving pressure (∆P) could reduce postoperative pulmonary complications. However, it is unclear how to conduct PEEP titration: by stepwise increase starting from zero PEEP (PEEPINCREMENTAL) or by stepwise decrease after a lung recruiting manoeuvre (PEEPDECREMENTAL). In this randomized trial, we compared the physiological effects of these two PEEP titration strategies on respiratory mechanics, ventilation/perfusion mismatch and gas exchange. Patients undergoing video-assisted thoracoscopic surgery in OLV were randomly assigned to a PEEPINCREMENTAL or PEEPDECREMENTAL strategy to match the lowest ∆P. In the PEEPINCREMENTAL group, PEEP was stepwise titrated from ZEEP up to 16 cm H2O, whereas in the PEEPDECREMENTAL group PEEP was decrementally titrated, starting from 16 cm H2O, immediately after a lung recruiting manoeuvre. Respiratory mechanics, ventilation/perfusion mismatch and blood gas analyses were recorded at baseline, after PEEP titration and at the end of surgery. Sixty patients were included in the study. After PEEP titration, shunt decreased similarly in both groups, from 50 [39-55]% to 35 [28-42]% in the PEEPINCREMENTAL and from 45 [37-58]% to 33 [25-45]% in the PEEPDECREMENTAL group (both p < 0.001 vs baseline). The resulting ∆P, however, was lower in the PEEPDECREMENTAL than in the PEEPINCREMENTAL group (8 [7-11] vs 10 [9-11] cm H2O; p = 0.03). In the PEEPDECREMENTAL group the PaO2/ FIO2 ratio increased significantly after intervention (from 140 [99-176] to 186 [152-243], p < 0.001). Both the PEEPINCREMENTAL and the PEEPDECREMENTAL strategies were able to decrease intraoperative shunt, but only PEEPDECREMENTAL improved oxygenation and lowered intraoperative ΔP.Clinical trial number NCT03635281; August 2018; "retrospectively registered".

Keywords: Driving pressure; One-lung ventilation; Oxygenation; Positive end-expiratory pressure; Shunt.

Conflict of interest statement

None of the authors received compensation to perform this study. Dr. Rees is a board member and minor shareholder of Mermaid Care A/S (Nørresundby, Denmark), who commercially produces the ALPE system. Dr. Karbing has performed consultancy work for Mermaid Care A/S. The remaining authors declare no competing interests.

© 2020. Springer Nature B.V.

Figures

Fig. 1
Fig. 1
Resume of study protocol
Fig. 2
Fig. 2
Shunt evaluation during the study in the PEEPINCREMENTAL and PEEPDECREMENTAL group
Fig. 3
Fig. 3
Individual changes in driving pressure before and after the study intervention in the PEEPINCREMENTAL and PEEPDECREMENTAL group

References

    1. Spadaro S, Karbing DS, Mauri T, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116(6):855–861. doi: 10.1093/bja/aew123.
    1. Spadaro S, Grasso S, Karbing DS, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128(3):531–538. doi: 10.1097/ALN.0000000000002011.
    1. Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913. doi: 10.1016/j.bja.2019.08.017.
    1. Park M, Ahn HJ, Kim JA, et al. Driving pressure during thoracic surgery: a randomized clinical trial. Anesthesiology. 2019;130(3):385–393. doi: 10.1097/ALN.0000000000002600.
    1. Blank RS, Colquhoun DA, Durieux ME, et al. Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–1295. doi: 10.1097/ALN.0000000000001100.
    1. Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–280. doi: 10.1016/S2213-2600(16)00057-6.
    1. Ferrando C, Mugarra A, Gutierrez A, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–665. doi: 10.1213/ANE.0000000000000105.
    1. Rauseo M, Mirabella L, Grasso S, et al. Peep titration based on the open lung approach during one lung ventilation in thoracic surgery: a physiological study. BMC Anesthesiol. 2018;18(1):156. doi: 10.1186/s12871-018-0624-3.
    1. Girgis K, Hamed H, Khater Y, Kacmarek RA. decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51(10):1132–1139.
    1. Gernoth C, Wagner G, Pelosi P, Luecke T. Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care. 2009;13(2):R59. doi: 10.1186/cc7786.
    1. Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERAS®) Soc Eur Soc Thorac Surg (ESTS). 2019;55(1):91–115.
    1. Kiss T, Wittenstein J, Becker C, et al. Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials. 2019;20(1):213. doi: 10.1186/s13063-019-3208-8.
    1. Villagra A, Ochagavia A, Vatua S, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:165–170. doi: 10.1164/ajrccm.165.2.2104092.
    1. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–1575. doi: 10.1007/s00134-016-4505-2.
    1. Spadaro S, Caramori G, Rizzuto C, et al. Expiratory flow limitation as a risk factor for pulmonary complications after major abdominal surgery. Anesth Analg. 2017;124(2):524–530. doi: 10.1213/ANE.0000000000001424.
    1. Rees SE, Kjærgaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The Automatic Lung Parameter Estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17:43–52. doi: 10.1023/A:1015456818195.
    1. Karbing DS, Kjærgaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33:240–248. doi: 10.1016/j.medengphy.2010.10.007.
    1. Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation-perfusion mismatch. Intensive Care Med. 2003;29(5):727–734. doi: 10.1007/s00134-003-1708-0.
    1. Kjaergaard S, Rees SE, Grønlund J, et al. Hypoxaemia after cardiac surgery: clinical application of a model of pulmonary gas exchange. Eur J Anaesthesiol. 2004;21(4):296–301. doi: 10.1097/00003643-200404000-00008.
    1. Karbing DS, Kjaergaard S, Smith BW, et al. Variation in the PaO2/ FIO2 ratio with FIO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118. doi: 10.1186/cc6174.
    1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in Intensive Care Units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291.
    1. Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–1609. doi: 10.1213/01.ANE.0000068484.67655.1A.
    1. Pereira SM, Tucci MR, Morais CCA, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129(6):1070–1081. doi: 10.1097/ALN.0000000000002435.
    1. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Cinnella G, Grasso S, Natale C, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52:766–775. doi: 10.1111/j.1399-6576.2008.01652.x.
    1. Garutti I, Martinez G, Cruz P, Piñeiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during one-lung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4):506–508. doi: 10.1053/j.jvca.2008.12.023.
    1. Cipulli F, Vasques F, Duscio E, Romitti F, Quintel M, Gattinoni L. Atelectrauma or volutrauma: the dilemma. J Thorac Dis. 2018;10(3):1258–1264. doi: 10.21037/jtd.2018.02.71.
    1. Kidane B, Choi S, Fortin D, et al. Use of lung-protective strategies during one-lung ventilation surgery: a multi-institutional survey. Ann Transl Med. 2018;6(13):269. doi: 10.21037/atm.2018.06.02.
    1. Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–1108. doi: 10.1097/ALN.0000000000001056.
    1. Carramiñana A, Ferrando C, Unzueta M, et al. Rationale and study design for an individualized perioperative open lung ventilatory strategy in patients on one-lung ventilation (iPROVE-OLV) J Cardiothorac Vasc Anesth. 2019;33(9):2492–2502. doi: 10.1053/j.jvca.2019.01.056.

Source: PubMed

3
Subscribe