Effects of Aspirin on Endothelial Function and Hypertension

Mikhail S Dzeshka, Alena Shantsila, Gregory Y H Lip, Mikhail S Dzeshka, Alena Shantsila, Gregory Y H Lip

Abstract

Purpose of review: Endothelial dysfunction is intimately related to the development of various cardiovascular diseases, including hypertension, and is often used as a target for pharmacological treatment. The scope of this review is to assess effects of aspirin on endothelial function and their clinical implication in arterial hypertension.

Recent findings: Emerging data indicate the role of platelets in the development of vascular inflammation due to the release of proinflammatory mediators, for example, triggered largely by thromboxane. Vascular inflammation further promotes oxidative stress, diminished synthesis of vasodilators, proaggregatory and procoagulant state. These changes translate into vasoconstriction, impaired circulation and thrombotic complications. Aspirin inhibits thromboxane synthesis, abolishes platelets activation and acetylates enzymes switching them to the synthesis of anti-inflammatory substances. Aspirin pleiotropic effects have not been fully elucidated yet. In secondary prevention studies, the decrease in cardiovascular events with aspirin outweighs bleeding risks, but this is not the case in primary prevention settings. Ongoing trials will provide more evidence on whether to expand the use of aspirin or stay within current recommendations.

Keywords: Arterial hypertension; Aspirin; Cyclooxygenase; Endothelial function; Inflammation; Platelets.

Conflict of interest statement

Drs. Dzeshka, Shantsila, and Lip declare no conflicts of interest relevant to this manuscript. Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Figures

Fig. 1
Fig. 1
Influence of aspirin on endothelial function. * Various receptors participate in cellular interactions. 15R-HETE, 15-Hydroxyeicosatetraenoic acid; 5-HT, serotonin; 5-LOX, 5-lipooxygenase; AA, arachidonic acid; AC, adenylate cyclase; IP, prostacyclin receptor; ADP, adenosine diphosphate; ALX, ATL receptor; ASA, acetyl salicylic acid; Ac, acetyl group; ATL, aspirin-triggered 15-epi-lipoxin A4; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; COX, cyclooxygenase; CXCL1, 4, 5, 7, 8, 12, chemokine (C-X-C motif) ligand 1, 4, 5, 7, 8 and 12, respectively; EDHF, endothelium-derived hyperpolarising factor; EGF, epidermal growth factor; eNOS, endothelial nitric oxide synthase; FV, XI, XIII, coagulation factors V, XI, XIII, respectively; FGF, fibroblast growth factor; GPVI, collagen receptor; GTP, guanosine triphosphate; HO-1, heme oxygenase 1; IGF, insulin-like growth factor; IL-1β, interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein 1; MIP-1α, macrophage inflammatory protein 1α; MMP-1, 2, 9, matrix metalloproteinase 1, 2 and 9, respectively; mRNA, matrix ribonucleic acid; NO, nitric oxide; NOX, nicotinamide adenine dinucleotide phosphate-oxidase; PDGF, platelet-derived growth factor; PgG2/H2, prostaglandin G2/H2; PgI2, prostacyclin; PGIS, prostacyclin synthase; PSGL-1, P-selectin glycoprotein ligand 1; RANTES, regulated on activation, normal T Cell expressed and secreted; S1P, phingosine-1-phosphate; S1P2, S1P receptor 2; sGC, soluble guanylate cyclase; SMC, smooth muscle cell; TGF-β1, transforming growth factor beta 1; TIMP-1, 4, tissue inhibitor of MMP 1 and 4, respectively; TNF-α, tumour necrosis factor α; TP, thromboxane prostanoid receptor; TSP-1, thrombospondin 1; TxA2, thromboxane A2; TXAS, thromboxane A2 synthase; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor

References

    1. Cahill PA, Redmond EM. Vascular endothelium—gatekeeper of vessel health. Atherosclerosis. 2016;248:97–109.
    1. Deshko MS, Snezhitsky VA, Dolgoshey TS, Madekina GA, Stempen TP. Flow-mediated dilation in patients with paroxysmal atrial fibrillation: initial evaluation, treatment results, pathophysiological correlates. Europace : Eur, Arrhythmias, Cardiac Electrophysiol: J Working Groups Cardiac Pacing, Arrhythmias, Cardiac Cell Electrophysiol Eur Soc Cardiol. 2011;13(suppl 3).
    1. Kornej J, Apostolakis S, Bollmann A, Lip GY. The emerging role of biomarkers in atrial fibrillation. Can J Cardiol. 2013;29(10):1181–93.
    1. Lehoux S, Jones EA. Shear stress, arterial identity and atherosclerosis. Thromb Haemost. 2016;115(3):467–73.
    1. Brandes RP. Endothelial dysfunction and hypertension. Hypertension. 2014;64(5):924–8.
    1. De Miguel C, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep. 2014;17(1):1–10.
    1. Schrottmaier WC, Kral JB, Badrnya S, Assinger A. Aspirin and P2Y12 inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost. 2015;114(9):478–89.
    1. Muller KA, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost. 2015;114(3):498–518.
    1. Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015;114(9):449–58.
    1. Hohlfeld T, Schrör K. Antiinflammatory effects of aspirin in ACS: relevant to its cardiocoronary actions? Thromb Haemost. 2015;114(9):469–77.
    1. Feletou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011;164(3):894–912.
    1. Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer prevention. Br J Cancer. 2014;111(1):61–7.
    1. Dai SX, Li WX, Li GH, Huang JF. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. Peer J. 2016;4:e1791.
    1. Serebruany VL, Cherepanov V, Cabrera-Fuentes HA, Kim MH. Solid cancers after antiplatelet therapy: confirmations, controversies, and challenges. Thromb Haemost. 2015;114(12):1104–12.
    1. Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin Pharmacol: Adv Appl. 2014;6:51–9.
    1. Smyth EM. Thromboxane and the thromboxane receptor in cardiovascular disease. Clin Lipidol. 2010;5(2):209–19.
    1. Petrucci G, Rizzi A, Cavalca V, Habib A, Pitocco D, Veglia F, et al. Patient-independent variables affecting the assessment of aspirin responsiveness by serum thromboxane measurement. Thrombosis Haemostasis. 2016(2016-07-21 00:00:00).
    1. Gleim S, Stitham J, Tang WH, Li H, Douville K, Chelikani P, et al. Human thromboxane A2 receptor genetic variants: in silico, in vitro and "in platelet" analysis. PLoS ONE. 2013;8(6)
    1. Katugampola SD, Davenport AP. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. Br J Pharmacol. 2001;134(7):1385–92.
    1. Blair P, Flaumenhaft R. Platelet α–granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.
    1. Koenen RR. The prowess of platelets in immunity and inflammation. Thrombosis Haemostasis. 2016(2016-07-07 00:00:00).
    1. Soon ASC, Chua JW, Becker DL. Connexins in endothelial barrier function – novel therapeutic targets countering vascular hyperpermeability. Thrombosis Haemostasis. 2016(2016-08-04 00:00:00).
    1. Pierini D, Bryan NS. Nitric oxide availability as a marker of oxidative stress. Methods Mol Biol (Clifton, NJ) 2015;1208:63–71.
    1. Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med. 2014;24(4):165–9.
    1. Ball SK, Field MC, Tippins JR. Regulation of thromboxane receptor signaling at multiple levels by oxidative stress-induced stabilization, relocation and enhanced responsiveness. PLoS ONE. 2010;5(9)
    1. Muzaffar S, Shukla N, Massey Y, Angelini GD, Jeremy JY. NADPH oxidase 1 mediates upregulation of thromboxane A2 synthase in human vascular smooth muscle cells: inhibition with iloprost. Eur J Pharmacol. 2011;658(2–3):187–92.
    1. Zhang M, Song P, Xu J, Zou MH. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2011;31(1):125–32.
    1. Francois H, Athirakul K, Mao L, Rockman H, Coffman TM. Role for thromboxane receptors in angiotensin-II-induced hypertension. Hypertension. 2004;43(2):364–9.
    1. Sparks MA, Makhanova NA, Griffiths RC, Snouwaert JN, Koller BH, Coffman TM. Thromboxane receptors in smooth muscle promote hypertension, vascular remodeling, and sudden death. Hypertension. 2013;61(1):166–73.
    1. Schildknecht S, van der Loo B, Weber K, Tiefenthaler K, Daiber A, Bachschmid MM. Endogenous peroxynitrite modulates PGHS-1-dependent thromboxane A2 formation and aggregation in human platelets. Free Radic Biol Med. 2008;45(4):512–20.
    1. Zou MH. Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Lipid Mediators. 2007;82(1–4):119–27.
    1. Nevitt C, McKenzie G, Christian K, Austin J, Hencke S, Hoying J, et al. Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. Am J Physiol Heart Circ Physiol. 2016;310(11):H1842–H50.
    1. Muzaffar S, Jeremy JY, Angelini GD, Shukla N. NADPH oxidase 4 mediates upregulation of type 4 phosphodiesterases in human endothelial cells. J Cell Physiol. 2012;227(5):1941–50.
    1. Lassegue B, San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–90.
    1. Gamez-Mendez AM, Vargas-Robles H, Rios A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS ONE. 2015;10(9)
    1. Liu CQ, Leung FP, Wong SL, Wong WT, Lau CW, Lu L, et al. Thromboxane prostanoid receptor activation impairs endothelial nitric oxide-dependent vasorelaxations: the role of Rho kinase. Biochem Pharmacol. 2009;78(4):374–81.
    1. Banerjee D, Mazumder S, Sinha AK. The role of inhibition of nitric oxide synthesis in the aggregation of platelets due to the stimulated production of thromboxane A2. Blood Coagul Fibrinolysis: Int J Haemostasis Thrombosis. 2014;25(6):585–91.
    1. Banerjee D, Mazumder S, Kumar Sinha A. Involvement of nitric oxide on calcium mobilization and arachidonic acid pathway activation during platelet aggregation with different aggregating agonists. Int J Biomed Sci: IJBS. 2016;12(1):25–35.
    1. Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane A(2), thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res. 2014;102(1):9–16.
    1. Vanhoutte PM. Endothelium-dependent contractions in hypertension: when prostacyclin becomes ugly. Hypertension. 2011;57(3):526–31.
    1. Luo W, Liu B, Zhou Y. The endothelial cyclooxygenase pathway: insights from mouse arteries. Eur J Pharmacol. 2016;780:148–58.
    1. Kirkby NS, Lundberg MH, Harrington LS, Leadbeater PD, Milne GL, Potter CM, et al. Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system. Proc Natl Acad Sci U S A. 2012;109(43):17597–602.
    1. Zhou Y, Luo W, Zhang Y, Li H, Huang D, Liu B. Cyclo-oxygenase-1 or −2-mediated metabolism of arachidonic acid in endothelium-dependent contraction of mouse arteries. Exp Physiol. 2013;98(7):1225–34.
    1. Patrono C. Cardiovascular effects of nonsteroidal anti-inflammatory drugs. Curr Cardiol Rep. 2016;18(3):1–8.
    1. Tang SY, Monslow J, Todd L, Lawson J, Pure E, FitzGerald GA. Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation. 2014;129(17):1761–9.
    1. Kirkby NS, Zaiss AK, Urquhart P, Jiao J, Austin PJ, Al-Yamani M, et al. LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression. PLoS ONE. 2013;8(7)
    1. Liu B, Li Z, Zhang Y, Luo W, Zhang J, Li H, et al. Vasomotor reaction to cyclooxygenase-1-mediated prostacyclin synthesis in carotid arteries from two-kidney-one-clip hypertensive mice. PLoS ONE. 2015;10(8)
    1. Li S, Liu B, Luo W, Zhang Y, Li H, Huang D, et al. Role of cyclooxygenase-1 and −2 in endothelium-dependent contraction of atherosclerotic mouse abdominal aortas. Clin Exp Pharmacol Physiol. 2016;43(1):67–74.
    1. Tang EH, Vanhoutte PM. Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics. 2008;32(3):409–18.
    1. Pratico D, Tillmann C, Zhang ZB, Li H, FitzGerald GA. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci U S A. 2001;98(6):3358–63.
    1. Feletou M, Verbeuren TJ, Vanhoutte PM. Endothelium-dependent contractions in SHR: a tale of prostanoid TP and IP receptors. Br J Pharmacol. 2009;156(4):563–74.
    1. Liu B, Luo W, Zhang Y, Li H, Zhu N, Huang D, et al. Involvement of cyclo-oxygenase-1-mediated prostacyclin synthesis in the vasoconstrictor activity evoked by ACh in mouse arteries. Exp Physiol. 2012;97(2):277–89.
    1. Liu D, Liu B, Luo W, Li H, Zhang Y, Zhou Y. A vasoconstrictor response to COX-1-mediated prostacyclin synthesis in young rat renal arteries that increases in prehypertensive conditions. Am J Physiol Heart Circ Physiol. 2015;309(5):H804–11.
    1. White SJ, Newby AC, Johnson TW. Endothelial erosion of plaques as a substrate for coronary thrombosis. Thromb Haemost. 2016;115(3):509–19.
    1. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016.
    1. Romero M, Leon-Gomez E, Lobysheva I, Rath G, Dogne JM, Feron O, et al. Effects of BM-573 on endothelial dependent relaxation and increased blood pressure at early stages of atherosclerosis. PLoS ONE. 2016;11(3)
    1. Huang SW, Kuo HL, Hsu MT, Tseng YJ, Lin SW, Kuo SC, et al. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models. Thrombosis Haemostasis. 2016;116(2).
    1. Francois H, Makhanova N, Ruiz P, Ellison J, Mao L, Rockman HA, et al. A role for the thromboxane receptor in L-NAME hypertension. Am J Physiol Renal Physiol. 2008;295(4):F1096–102.
    1. Cayatte AJ, Du Y, Oliver-Krasinski J, Lavielle G, Verbeuren TJ, Cohen RA. The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20(7):1724–8.
    1. Del Turco S, Basta G, Lazzerini G, Chancharme L, Lerond L, De Caterina R. Involvement of the TP receptor in TNF-alpha-induced endothelial tissue factor expression. Vasc Pharmacol. 2014;62(2):49–56.
    1. Sebekova K, Ramuscak A, Boor P, Heidland A, Amann K. The selective TP receptor antagonist, S18886 (terutroban), attenuates renal damage in the double transgenic rat model of hypertension. Am J Nephrol. 2008;28(1):47–53.
    1. Gelosa P, Sevin G, Pignieri A, Budelli S, Castiglioni L, Blanc-Guillemaud V, et al. Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, prevents hypertensive vascular hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol. 2011;300(3):H762–8.
    1. Gelosa P, Ballerio R, Banfi C, Nobili E, Gianella A, Pignieri A, et al. Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, increases survival in stroke-prone rats by preventing systemic inflammation and endothelial dysfunction: comparison with aspirin and rosuvastatin. J Pharmacol Exp Ther. 2010;334(1):199–205.
    1. Bousser MG, Amarenco P, Chamorro A, Fisher M, Ford I, Fox KM, et al. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet (London, England) 2011;377(9782):2013–22.
    1. Bots ML, Ford I, Lloyd SM, Laurent S, Touboul PJ, Hennerici MG. Thromboxane prostaglandin receptor antagonist and carotid atherosclerosis progression in patients with cerebrovascular disease of ischemic origin: a randomized controlled trial. Stroke; J Cerebral Circ. 2014;45(8):2348–53.
    1. Chan MV, Knowles RBM, Lundberg MH, Tucker AT, Mohamed NA, Kirkby NS, et al. P2Y12 receptor blockade synergizes strongly with nitric oxide and prostacyclin to inhibit platelet activation. Br J Clin Pharmacol. 2016;81(4):621–33.
    1. Thomas MR, Storey RF. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb Haemost. 2015;114(9):490–7.
    1. Frey AJ, Ibrahim S, Gleim S, Hwa J, Smyth EM. Biased suppression of TP homodimerization and signaling through disruption of a TM GxxxGxxxL helical interaction motif. J Lipid Res. 2013;54(6):1678–90.
    1. Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503–13.
    1. Jung SB, Kim CS, Naqvi A, Yamamori T, Mattagajasingh I, Hoffman TA, et al. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res. 2010;107(7):877–87.
    1. Kabirian F, Amoabediny G, Haghighipour N, Salehi-Nik N, Zandieh-Doulabi B. Nitric oxide secretion by endothelial cells in response to fluid shear stress, aspirin, and temperature. J Biomed Mater Res A. 2015;103(3):1231–7.
    1. Ghosh R, Bank S, Maji UK, Bhattacharya R, Guha S, Khan NN, et al. The effect of acetyl salicylic acid induced nitric oxide synthesis in the normalization of hypertension through the stimulation of renal cortexin synthesis and by the inhibition of dermcidin isoform 2, a hypertensive protein production. Int J Biomed Sci: IJBS. 2014;10(3):158–66.
    1. Karmohapatra SK, Chakraborty K, Kahn NN, Sinha AK. The role of nitric oxide in aspirin induced thrombolysis in vitro and the purification of aspirin activated nitric oxide synthase from human blood platelets. Am J Hematol. 2007;82(11):986–95.
    1. Hennekens CH, Schneider WR, Pokov A, Hetzel S, Demets D, Serebruany V, et al. A randomized trial of aspirin at clinically relevant doses and nitric oxide formation in humans. J Cardiovasc Pharmacol Ther. 2010;15(4):344–8.
    1. Hetzel S, DeMets D, Schneider R, Borzak S, Schneider W, Serebruany V, et al. Aspirin increases nitric oxide formation in chronic stable coronary disease. J Cardiovasc Pharmacol Ther. 2013;18(3):217–21.
    1. Schror K, Rauch BH. Aspirin and lipid mediators in the cardiovascular system. Prostaglandins Lipid Mediators. 2015;121(Pt A):17–23.
    1. Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol. 2015;760:49–63.
    1. Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Fierro IM. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: a novel antioxidative mechanism. Thromb Haemost. 2007;97(1):88–98.
    1. Ho KJ, Spite M, Owens CD, Lancero H, Kroemer AH, Pande R, et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. Am J Pathol. 2010;177(4):2116–23.
    1. Vital SA, Becker F, Holloway PM, Russell J, Perretti M, Granger DN, et al. Formyl-peptide receptor 2/3/Lipoxin a4 receptor regulates neutrophil-platelet aggregation and attenuates cerebral inflammation: impact for therapy in cardiovascular disease. Circulation. 2016;133(22):2169–79.
    1. Gil-Villa AM, Norling LV, Serhan CN, Cordero D, Rojas M, Cadavid A. Aspirin triggered-lipoxin A4 reduces the adhesion of human polymorphonuclear neutrophils to endothelial cells initiated by preeclamptic plasma. Prostaglandins Leukot Essent Fat Acids. 2012;87(4–5):127–34.
    1. Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, et al. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets. 2015;26(6):507–20.
    1. Elajami TK, Colas RA, Dalli J, Chiang N, Serhan CN, Welty FK. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J : Off Publ Fed Am Soc Exp Biol. 2016.
    1. Dona M, Fredman G, Schwab JM, Chiang N, Arita M, Goodarzi A, et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112(3):848–55.
    1. Gong Y, Lin M, Piao L, Li X, Yang F, Zhang J, et al. Aspirin enhances protective effect of fish oil against thrombosis and injury-induced vascular remodelling. Br J Pharmacol. 2015;172(23):5647–60.
    1. Mahajan-Thakur S, Bohm A, Jedlitschky G, Schror K, Rauch BH. Sphingosine-1-phosphate and its receptors: a mutual link between blood coagulation and inflammation. Mediat Inflamm. 2015;2015:831059.
    1. Vito CD, Hadi LA, Navone SE, Marfia G, Campanella R, Mancuso ME, et al. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. Platelets. 2016;27(5):393–401.
    1. Pietri P, Vlachopoulos C, Terentes-Printzios D, Xaplanteris P, Aznaouridis K, Petrocheilou K, et al. Beneficial effects of low-dose aspirin on aortic stiffness in hypertensive patients. Vasc Med. 2014;19(6):452–7.
    1. Soloviev MA, Kulakova NV, Semiglazova TA, Borodulina EV, Udut VV. Correction of endothelial dysfunction in patients with arterial hypertension. Bull Exp Biol Med. 2011;151(2):183–5.
    1. Magen E, Viskoper JR, Mishal J, Priluk R, London D, Yosefy C. Effects of low-dose aspirin on blood pressure and endothelial function of treated hypertensive hypercholesterolaemic subjects. J Hum Hypertens. 2005;19(9):667–73.
    1. Hermida RC, Ayala DE, Calvo C, Lopez JE. Aspirin administered at bedtime, but not on awakening, has an effect on ambulatory blood pressure in hypertensive patients. J Am Coll Cardiol. 2005;46(6):975–83.
    1. Hermida RC, Ayala DE, Mojon A, Fernandez JR. Ambulatory blood pressure control with bedtime aspirin administration in subjects with prehypertension. Am J Hypertens. 2009;22(8):896–903.
    1. Ayala DE, Hermida RC. Sex differences in the administration-time-dependent effects of low-dose aspirin on ambulatory blood pressure in hypertensive subjects. Chronobiol Int. 2010;27(2):345–62.
    1. Hermida RC, Ayala DE, Calvo C, Lopez JE, Mojon A, Rodriguez M, et al. Differing administration time-dependent effects of aspirin on blood pressure in dipper and non-dipper hypertensives. Hypertension. 2005;46(4):1060–8.
    1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J. 2013;34(28):2159–219.
    1. Bibbins-Domingo K. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force Recommendation StatementAspirin Use for the Primary Prevention of CVD and CRC. Ann Intern Med. 2016;164(12):836–45.
    1. National Institute for Health and Care Excellence. Clinical Knowledge Summaries. Antiplatelet treatment (Last revised in October 2015). Scenario: Antiplatelet treatment for primary prevention of cardiovascular disease (CVD). Available from . Accessed August 10, 2016.
    1. Santilli F, Pignatelli P, Violi F, Davì G. Aspirin for primary prevention in diabetes mellitus: from the calculation of cardiovascular risk and risk/benefit profile to personalised treatment. Thromb Haemost. 2015;114(11):876–82.
    1. Kunutsor SK, Seidu S, Khunti K. Aspirin for primary prevention of cardiovascular and all-cause mortality events in diabetes: updated meta-analysis of randomized controlled trials. Diabetic Med: J British Diabetic Assoc. 2016.
    1. Bartolucci AA, Howard G. Meta-analysis of data from the six primary prevention trials of cardiovascular events using aspirin. Am J Cardiol. 2006;98(6):746–50.
    1. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet (London, England) 2009;373(9678):1849–60.
    1. Bartolucci AA, Tendera M, Howard G. Meta-analysis of multiple primary prevention trials of cardiovascular events using aspirin. Am J Cardiol. 2011;107(12):1796–801.
    1. Raju N, Sobieraj-Teague M, Hirsh J, O’Donnell M, Eikelboom J. Effect of aspirin on mortality in the primary prevention of cardiovascular disease. Am J Med. 2011;124(7):621–9.
    1. Raju N, Sobieraj-Teague M, Bosch J, Eikelboom JW. Updated meta-analysis of aspirin in primary prevention of cardiovascular disease. Am J Med. 2016;129(5):e35–6.
    1. Guirguis-Blake JM, Evans CV, Senger CA, O’Connor EA, Whitlock EP. Aspirin for the Primary Prevention of Cardiovascular Events: A Systematic Evidence Review for the U.S. Preventive Services Task ForceAspirin for the Primary Prevention of Cardiovascular Events. Ann Intern Med. 2016;164(12):804–13.
    1. Whitlock EP, Burda BU, Williams SB, Guirguis-Blake JM, Evans CV. Bleeding risks with aspirin use for primary prevention in adults: a systematic review for the U.S. Preventive Services Task Force Bleeding Risks With Aspirin Use. Ann Intern Med. 2016;164(12):826–35.
    1. Bayer. A Study to Assess the Efficacy and Safety of Enteric-Coated Acetylsalicylic Acid in Patients at Moderate Risk of Cardiovascular Disease (ARRIVE). July 12, 2007. Updated: July 1, 2016. NLM Identifier: NCT00501059 Available from: . Accessed July 30, 2016.
    1. ASPREE Investigator Group Study design of ASPirin in Reducing Events in the Elderly (ASPREE): a randomized, controlled trial. Contemp Clin Trials. 2013;36(2):555–64.
    1. De Berardis G, Sacco M, Evangelista V, Filippi A, Giorda CB, Tognoni G, et al. Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetes (ACCEPT-D): design of a randomized study of the efficacy of low-dose aspirin in the prevention of cardiovascular events in subjects with diabetes mellitus treated with statins. Trials. 2007;8:21.
    1. Aung T, Haynes R, Barton J, Cox J, Murawska A, Murphy K, et al. Cost-effective recruitment methods for a large randomised trial in people with diabetes: A Study of Cardiovascular Events iN Diabetes (ASCEND) Trials. 2016;17(1):286.
    1. Population Health Research Institute. The International Polycap Study 3 (TIPS-3). July 10, 2012. Updated: May 22, 2015. Available from: . Accessed July 28, 2016.
    1. Le Quellec S, Bordet JC, Negrier C, Dargaud Y. Comparison of current platelet functional tests for the assessment of aspirin and clopidogrel response. A review of the literature. Thrombosis Haemostasis. 2016(2016-07-21 00:00:00).
    1. Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008;336(7637):195–8.
    1. Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Huisman MV. Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Arch Intern Med. 2007;167(15):1593–9.
    1. Pettersen AA, Arnesen H, Seljeflot I. A brief review on high on-aspirin residual platelet reactivity. Vasc Pharmacol. 2015;67–69:6–9.
    1. Nagatsuka K, Miyata S, Kada A, Kawamura A, Nakagawara J, Furui E, et al. Cardiovascular events occur independently of high on-aspirin platelet reactivity and residual COX-1 activity in stable cardiovascular patients. Thrombosis Haemostasis. 2016;116(2).
    1. Brun C, Daali Y, Combescure C, Zufferey A, Michelson AD, Fontana P, et al. Aspirin response: Differences in serum thromboxane B2 levels between clinical studies. Platelets. 2016;27(3):196–202.
    1. Homorodi N, Kovacs EG, Lee S, Katona E, Shemirani AH, Haramura G, et al. The lack of aspirin resistance in patients with coronary artery disease. J Transl Med. 2016;14:74.
    1. Freynhofer MK, Gruber SC, Grove EL, Weiss TW, Wojta J, Huber K. Antiplatelet drugs in patients with enhanced platelet turnover: biomarkers versus platelet function testing. Thromb Haemost. 2015;114(9):459–68.
    1. Kakouros N, Nazarian SM, Stadler PB, Kickler TS, Rade JJ. Risk factors for nonplatelet thromboxane generation after coronary artery bypass graft surgery. J Am Heart Assoc. 2016;5(3)
    1. Christensen KH, Grove EL, Wurtz M, Kristensen SD, Hvas AM. Reduced antiplatelet effect of aspirin during 24 hours in patients with coronary artery disease and type 2 diabetes. Platelets. 2015;26(3):230–5.
    1. Henry P, Vermillet A, Boval B, Guyetand C, Petroni T, Dillinger JG, et al. 24-hour time-dependent aspirin efficacy in patients with stable coronary artery disease. Thromb Haemost. 2011;105(2):336–44.
    1. Larsen SB, Grove EL, Neergaard-Petersen S, Wurtz M, Hvas AM, Kristensen SD. Determinants of reduced antiplatelet effect of aspirin in patients with stable coronary artery disease. PLoS ONE. 2015;10(5)
    1. Doroszko A, Szahidewicz-Krupska E, Janus A, Jakubowski M, Turek A, Ilnicka P, et al. Endothelial dysfunction in young healthy men is associated with aspirin resistance. Vasc Pharmacol. 2015;67–69:30–7.
    1. Larsen SB, Grove EL, Wurtz M, Neergaard-Petersen S, Hvas AM, Kristensen SD. The influence of low-grade inflammation on platelets in patients with stable coronary artery disease. Thromb Haemost. 2015;114(3):519–29.
    1. Stratz C, Nuehrenberg T, Amann M, Cederqvist M, Kleiner P, Valina CM, et al. Impact of reticulated platelets on antiplatelet response to thienopyridines is independent of platelet turnover. Thrombosis Haemostasis. 2016(2016-08-04 00:00:00).

Source: PubMed

3
Subscribe