Exposure-response relationship of AMG 386 in combination with weekly paclitaxel in recurrent ovarian cancer and its implication for dose selection

Jian-Feng Lu, Erik Rasmussen, Beth Y Karlan, Ignace B Vergote, Lynn Navale, Mita Kuchimanchi, Rebeca Melara, Daniel E Stepan, David M Weinreich, Yu-Nien Sun, Jian-Feng Lu, Erik Rasmussen, Beth Y Karlan, Ignace B Vergote, Lynn Navale, Mita Kuchimanchi, Rebeca Melara, Daniel E Stepan, David M Weinreich, Yu-Nien Sun

Abstract

Purpose: To characterize exposure-response relationships of AMG 386 in a phase 2 study in advanced ovarian cancer for the facilitation of dose selection in future studies.

Methods: A population pharmacokinetic model of AMG 386 (N = 141) was developed and applied in an exposure-response analysis using data from patients (N = 160) with recurrent ovarian cancer who received paclitaxel plus AMG 386 (3 or 10 mg/kg once weekly) or placebo. Reduction in the risk of progression or death with increasing exposure (steady-state area under the concentration-versus-time curve [AUC(ss)]) was assessed using Cox regression analyses. Confounding factors were tested in multivariate analysis. Alternative AMG 386 doses were explored with Monte Carlo simulations using population pharmacokinetic and parametric survival models.

Results: There was a trend toward increased PFS with increased AUC(ss) (hazard ratio [HR] for each one-unit increment in AUC(ss), 0.97; P = 0.097), suggesting that the maximum effect on prolonging PFS was not achieved at the highest dose tested (10 mg/kg). Among patients with AUC(ss) ≥ 9.6 mg h/mL, PFS was 8.1 months versus 5.7 months for AUC(ss) < 9.6 mg h/mL and 4.6 months for placebo. No relationship between AUC(ss) and grade ≥ 3 adverse events was observed. Simulations predicted that AMG 386 15 mg/kg once weekly would result in an AUC(ss) ≥ 9.6 mg h/mL in > 90% of patients with median PFS of 8.2 months versus 5.0 months for placebo (HR [15 mg/kg vs. placebo], 0.56).

Conclusions: Increased exposure to AMG 386 was associated with improved clinical outcomes in recurrent ovarian cancer, supporting the evaluation of a higher dose in future studies.

Trial registration: ClinicalTrials.gov NCT00102830 NCT00479817.

Figures

Fig. 1
Fig. 1
Population pharmacokinetic analysis shows a linear correlation between AMG 386 clearance (CL) and creatinine clearance (CrCL)
Fig. 2
Fig. 2
Kaplan–Meier plots of progression-free survival (PFS; per Response Evaluation Criteria in Solid Tumors, clinical progression or CA-125 progression, or death) stratified by treatment arm (a) or exposure to ≥9.6 or <9.6 mg h/mL (b). AUCss, steady-state area under the concentration-versus-time curve; QW, once weekly
Fig. 3
Fig. 3
Distribution of observed steady-state area under the concentration-versus-time curve (AUCss) following once-weekly (QW) doses of AMG 386 3 or 10 mg/kg (a), predicted AUCss following simulated AMG 386 15 mg/kg QW (b), and observed AUCss following AMG 386 30 mg/kg QW in the first-in-human study (c)
Fig. 4
Fig. 4
Predicted versus observed Kaplan–Meier estimates of progression-free survival (PFS). a Paclitaxel plus placebo; b AMG 386 3 mg/kg once weekly (QW); c AMG 386 10 mg/kg QW; d AMG 386 15 mg/kg QW (data source: AUCss ≥ 9.6 mg h/mL; n = 26). Graphs depict 1,000 replicates of 1,000 patients for each dose

References

    1. Wetherington JD, Pfister M, Banfield C, Stone JA, Krishna R, Allerheiligen S, Grasela DM. Model-based drug development: strengths, weaknesses, opportunities, and threats for broad application of pharmacometrics in drug development. J Clin Pharmacol. 2010;50:31S–46S. doi: 10.1177/0091270010377629.
    1. Gobburu JV. Pharmacometrics 2020. J Clin Pharmacol. 2010;50:151S–157S. doi: 10.1177/0091270010376977.
    1. Goffin J, Baral S, Tu D, Nomikos D, Seymour L. Objective responses in patients with malignant melanoma or renal cell cancer in early clinical studies do not predict regulatory approval. Clin Cancer Res. 2005;11:5928–5934. doi: 10.1158/1078-0432.CCR-05-0130.
    1. Ratain MJ. Phase II oncology trials: let’s be positive. Clin Cancer Res. 2005;11:5661–5662. doi: 10.1158/1078-0432.CCR-05-1046.
    1. Appels NM, Bolijn MJ, Chan K, Stephens TC, Hoctin-Boes G, Middleton M, Beijnen JH, de Bono JS, Harris AL, Schellens JH. Phase I pharmacokinetic and pharmacodynamic study of the prenyl transferase inhibitor AZD3409 in patients with advanced cancer. Br J Cancer. 2008;98:1951–1958. doi: 10.1038/sj.bjc.6604402.
    1. Karrison TG, Maitland ML, Stadler WM, Ratain MJ. Design of phase II cancer trials using a continuous endpoint of change in tumor size: application to a study of sorafenib and erlotinib in non small-cell lung cancer. J Natl Cancer Inst. 2007;99:1455–1461. doi: 10.1093/jnci/djm158.
    1. Workman P. Challenges of PK/PD measurements in modern drug development. Eur J Cancer. 2002;38:2189–2193. doi: 10.1016/S0959-8049(02)00395-7.
    1. Ratain MJ, Humphrey RW, Gordon GB, Fyfe G, Adamson PC, Fleming TR, Stadler WM, Berry DA, Peck CC. Recommended changes to oncology clinical trial design: revolution or evolution? Eur J Cancer. 2008;44:8–11. doi: 10.1016/j.ejca.2007.09.011.
    1. Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP, Jorga K, Fagerberg J, Bruno R. Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol. 2009;27:4103–4108. doi: 10.1200/JCO.2008.21.0807.
    1. Wang Y, Sung C, Dartois C, Ramchandani R, Booth BP, Rock E, Gobburu J. Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin Pharmacol Ther. 2009;86:167–174. doi: 10.1038/clpt.2009.64.
    1. Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66:357–371. doi: 10.1007/s00280-009-1170-y.
    1. Jimeno A, Rudek MA, Kulesza P, Ma WW, Wheelhouse J, Howard A, Khan Y, Zhao M, Jacene H, Messersmith WA, Laheru D, Donehower RC, Garrett-Mayer E, Baker SD, Hidalgo M. Pharmacodynamic-guided modified continuous reassessment method-based, dose-finding study of rapamycin in adult patients with solid tumors. J Clin Oncol. 2008;26:4172–4179. doi: 10.1200/JCO.2008.16.2347.
    1. Lu J-F, Claret L, Sutjandra L, Kuchimanchi M, Melara R, Bruno R, Sun Y-N. Population pharmacokinetic/pharmacodynamic modeling for the time course of tumor shrinkage by motesanib in thyroid cancer patients. Cancer Chemother Pharmacol. 2010;66:1151–1158. doi: 10.1007/s00280-010-1456-0.
    1. Guidance for industry end-of-phase 2A meetings (2009). United States Food and Drug Administration. Available at: . Accessed 24 Aug 2009
    1. US Food and Drug Administration (2006) Critical path opportunities report. US Department of Health and Human Services, Washington
    1. Oliner J, Min H, Leal J, Yu D, Rao S, You E, Tang X, Kim H, Meyer S, Han SJ, Hawkins N, Rosenfeld R, Davy E, Graham K, Jacobsen F, Stevenson S, Ho J, Chen Q, Hartmann T, Michaels M, Kelley M, Li L, Sitney K, Martin F, Sun JR, Zhang N, Lu J, Estrada J, Kumar R, Coxon A, Kaufman S, Pretorius J, Scully S, Cattley R, Payton M, Coats S, Nguyen L, Desilva B, Ndifor A, Hayward I, Radinsky R, Boone T, Kendall R. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell. 2004;6:507–516. doi: 10.1016/j.ccr.2004.09.030.
    1. Karlan BY, Oza AM, Richardson GE, Provencher DM, Hansen VL, Buck M, Chambers SK, Ghatage P, Pippitt Jr. CH, Brown III JV, Covens A, Nagarkar RV, Davy M, Leath III CA, Nguyen H, Stepan DE, Weinreich DM, Tassoudji M, Sun YN, Vergote IB (2011) A randomized, double-blind, placebo-controlled phase 2 study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J Clin Oncol. doi:10.1200/JCO.2010.34.3178
    1. Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E, Silverman JM, Rasmussen E, Sun YN, Zhong D, Hwang YC, Evelhoch JL, Oliner JD, Le N, Rosen LS. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol. 2009;27:3557–3565. doi: 10.1200/JCO.2008.19.6683.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–216. doi: 10.1093/jnci/92.3.205.
    1. Rustin GJ, Marples M, Nelstrop AE, Mahmoudi M, Meyer T. Use of CA-125 to define progression of ovarian cancer in patients with persistently elevated levels. J Clin Oncol. 2001;19:4054–4057.
    1. Beal SL, Sheiner LB, Boeckmann AJ (eds) (1989–1998) NONMEM users guides. Icon Development Solutions, Ellicott City
    1. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20:511–528. doi: 10.1007/BF01061469.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. doi: 10.1159/000180580.
    1. Marubini E, Grazia Valsecchi M. Analysing survival data from clinical trials and observational studies. Chichester: Wiley; 1995.
    1. Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62:779–786. doi: 10.1007/s00280-007-0664-8.
    1. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol. 2005;56:361–369. doi: 10.1007/s00280-005-1026-z.
    1. Rowinsky EK. Curtailing the high rate of late-stage attrition of investigational therapeutics against unprecedented targets in patients with lung and other malignancies. Clin Cancer Res. 2004;10:4220s–4226s. doi: 10.1158/1078-0432.CCR-040013.
    1. Gombar C, Loh E. Learn & confirm. Drug Discov Dev. 2007;10:22–27.
    1. European Medicines Agency (2005) The European Medicines Agency road map to 2010: preparing the ground for the future. London
    1. US Food and Drug Administration . Innovation or stagnation: challenge and opportunity on the critical path to new medical products. US Department of Health and Human Services. Rockville: US Food and Drug Administration; 2004.
    1. Agoram BM. Use of pharmacokinetic/pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics. Br J Clin Pharmacol. 2009;67:153–160. doi: 10.1111/j.1365-2125.2008.03297.x.
    1. Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today. 2008;13:341–346. doi: 10.1016/j.drudis.2008.01.003.
    1. Jain RK, Lee JJ, Hong D, Markman M, Gong J, Naing A, Wheler J, Kurzrock R. Phase I oncology studies: evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin Cancer Res. 2010;16:1289–1297. doi: 10.1158/1078-0432.CCR-09-2684.
    1. Adjei AA. What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J Clin Oncol. 2006;24:4054–4055. doi: 10.1200/JCO.2006.07.4658.
    1. Puchalski T, Prabhakar U, Jiao Q, Berns B, Davis HM. Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2010;16:1652–1661. doi: 10.1158/1078-0432.CCR-09-2581.
    1. Tanaka C, O’Reilly T, Kovarik JM, Shand N, Hazell K, Judson I, Raymond E, Zumstein-Mecker S, Stephan C, Boulay A, Hattenberger M, Thomas G, Lane HA. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26:1596–1602.
    1. O’Donnell A, Faivre S, Burris HA, III, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–1595. doi: 10.1200/JCO.2007.14.0988.
    1. Li J, Jameson MB, Baguley BC, Pili R, Baker SD. Population pharmacokinetic-pharmacodynamic model of the vascular-disrupting agent 5, 6-dimethylxanthenone-4-acetic acid in cancer patients. Clin Cancer Res. 2008;14:2102–2110. doi: 10.1158/1078-0432.CCR-07-1475.
    1. Zandvliet AS, Karlsson MO, Schellens JH, Copalu W, Beijnen JH, Huitema AD. Two-stage model-based clinical trial design to optimize phase I development of novel anticancer agents. Invest New Drugs. 2010;28:61–75. doi: 10.1007/s10637-008-9216-2.
    1. Sleijfer S, Wiemer E. Dose selection in phase I studies: why we should always go for the top. J Clin Oncol. 2008;26:1576–1578. doi: 10.1200/JCO.2007.15.5192.
    1. Bergsland E, Dickler MN. Maximizing the potential of bevacizumab in cancer treatment. Oncologist. 2004;9(Suppl 1):36–42. doi: 10.1634/theoncologist.9-suppl_1-36.
    1. Lowe PJ. Applying physiological and biochemical concepts to optimize biological drug development. Clin Pharmacol Ther. 2010;87:492–496. doi: 10.1038/clpt.2009.302.

Source: PubMed

3
Subscribe