Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke

Noriyuki Matsukawa, Takao Yasuhara, Koichi Hara, Lin Xu, Mina Maki, Guolong Yu, Yuji Kaneko, Kosei Ojika, David C Hess, Cesar V Borlongan, Noriyuki Matsukawa, Takao Yasuhara, Koichi Hara, Lin Xu, Mina Maki, Guolong Yu, Yuji Kaneko, Kosei Ojika, David C Hess, Cesar V Borlongan

Abstract

Background: Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, has been shown to promote therapeutic benefits in experimental stroke. However, equally compelling evidence demonstrates that the drug exerts variable and even detrimental effects in many neurological disease models. Assessment of the mechanism underlying minocycline neuroprotection should clarify the drug's clinical value in acute stroke setting.

Results: Here, we demonstrate that minocycline attenuates both in vitro (oxygen glucose deprivation) and in vivo (middle cerebral artery occlusion) experimentally induced ischemic deficits by direct inhibition of apoptotic-like neuronal cell death involving the anti-apoptotic Bcl-2/cytochrome c pathway. Such anti-apoptotic effect of minocycline is seen in neurons, but not apparent in astrocytes. Our data further indicate that the neuroprotection is dose-dependent, in that only low dose minocycline inhibits neuronal cell death cascades at the acute stroke phase, whereas the high dose exacerbates the ischemic injury.

Conclusion: The present study advises our community to proceed with caution to use the minimally invasive intravenous delivery of low dose minocycline in order to afford neuroprotection that is safe for stroke.

Figures

Figure 1
Figure 1
ATP activity and trypan blue assay in cultured neurons and astrocytes. ATP activity was measured to reveal cell viability with varying concentrations of minocycline or vehicle. OGD condition reduced ATP activity of cultured neurons to 40% of non-OGD control group (A). Low doses of minocycline (0.001 to 10 μM) preserved cell viability of neurons (A), but not astrocytes (B). In contrast, high dose of minocycline (100 μM) displayed toxicity to both neurons and astrocytes (A, B). In parallel with ATP assay, Trypan blue assay revealed that low doses of minocycline (0.001-10 μM) exerted neuroprotective effects on cultured neurons, but not astrocytes (C-G: neurons, H-L: astrocytes, C, H: non-OGD control, D, I: 0 μM, E, J: 1 μM, F, K: 100 μM of minocycline). High dose of minocycline (100 μM) displayed toxicity for both neurons and astrocytes. Data are shown as mean values ± SEM (*p < 0.05 increase and **p < 0.05 decrease vs. vehicle-treated cultured neurons or astrocytes; A, G: neurons, B, L: astrocytes). Scale bar: 25 μm.
Figure 2
Figure 2
Caspase3/7 activity and tunel staining in cultured neurons and astrocytes. Low dose minocycline (1 μM) reduced caspase3/7 activity of neurons (A), but not of astrocytes (B). In contrast, high dose minocycline (100 μM) displayed no suppressive effects on caspase 3/7 activity of neurons and increased that of astrocytes (A, B). Similarly, low dose minocycline reduced, whereas high dose minocycline increased the number of TUNEL positive neurons compared to vehicle-treated cultured neurons (OGD-exposed neurons treated with 0, 1 and 100 μM of minocycline; panels C, D and E, respectively). On the other hand, minocycline at all doses did not reduce the number of TUNEL positive astrocytes (OGD-exposed astrocytes treated with 0, 1 and 100 μM of minocycline; panels F, G and H, respectively). Data are shown as mean values ± SEM (*p < 0.05. A, I: neurons, B, J: astrocytes). Scale bar: 50 μm.
Figure 3
Figure 3
Bcl-2 expression and cytochrome c release in cultured neurons and astrocytes. Western blotting revealed that low dose minocycline upregulated Bcl-2 expression of neurons (A: lysates from 0, 1 and 100 μM of minocycline-treated neurons correspond to lanes 1, 2, and 3, respectively) with subsequent inhibition cytochrome c release from mitochondria to cytosol (B: lysates from 0, 1 and 100 μM of minocycline-treated neurons correspond to lanes 7, 8, and 9, respectively). In contrast, minocycline at all doses did not upregulate Bcl-2 expression in astrocytes (A: lysates from 0, 1 and 100 μM of minocycline-treated astrocytes correspond to lanes 4, 5, and 6, respectively). Immunocytochemical analysis revealed that minocycline low dose (D: 1 μM) significantly increased the number of Bcl-2 positive neurons compared to vehicle-treated (C: 0 μM) or high dose-treated neurons (E: 100 μM). In contrast, minocycline at all doses did not alter the number of Bcl-2 positive astrocytes (F: 0 μM, G: 1 μM and H: 100 μM). Quantitative analyses of Bcl-2 positive cells are shown in panels I and J. Data represent mean values ± SEM (* p < 0.05. I: neurons, J: astrocytes). Scale bar: 25 μm.
Figure 4
Figure 4
Motor and neurological performance of stroke rats. Both motor and neurological dysfunctions were significantly ameliorated by low dose minocycline (20 mg/kg, i.v.), as revealed by elevated body swing test (EBST; A) and Bederson test (B). In contrast, high dose minocycline (100 mg/kg, i.v.) significantly exacerbated neurological deficits and slightly worsened motor deficits. Data are shown as the mean values ± SEM (*p < 0.05).
Figure 5
Figure 5
Cerebral infarct analysis of stroke brains. TTC staining revealed that low dose minocycline (20 mg/kg; B) significantly reduced cerebral infarct volumes compared to the vehicle group (A). In particular, the striatal infarct volumes in the low dose group were significantly smaller than the vehicle group. In contrast, high dose minocycline (100 mg/kg; C) significantly increased the infarct volumes compared to those in the vehicle group. Quantitative analyses are shown in panel D. Data represent mean values ± SEM (*p < 0.05).
Figure 6
Figure 6
Tunel staining in the ischemic peri-infarct area. Low dose significantly decreased (B), whereas high dose significantly increased (C) the number of TUNEL positive cells in the ischemic striatal peri-infarct area of minocycline-treated stroke rats compared to the vehicle-treated stroke rats (A). Quantitative analyses of Bcl-2 positive cells are shown in panel D. Data are shown as mean values ± SEM (*p < 0.05). Four representative ischemic striatal peri-infarct areas (+0.2 mm anterior to the bregma), in which TUNEL positive cells were counted (data in panel D), are shown in panel E (square boxes labeled 1-4 correspond to areas 1-4 in panel D). Scale bar: 25 μm.
Figure 7
Figure 7
Bcl-2 expression in the ischemic peri-infarct area. Low dose (B) significantly upregulated, whereas high dose (C) significantly suppressed the Bcl-2 expression in the ischemic peri-infarct area of minocycline-treated rats compared to that in the vehicle-treated rats (A). Quantitative analyses of Bcl-2 positive cells are shown in panel D. Data are shown as mean values ± SEM (*p < 0.05). Two representative ischemic striatal peri-infarct areas (+0.2 mm anterior to the bregma), in which Bcl-2 positive cells were counted (data in panel D), are shown in panel E (square boxes). Co-localization of Bcl-2 and MAP2 was found in ischemic striatal peri-infarct area, suggesting anti-apoptotic effects of minocycline via Bcl-2 upregulation in ischemic neurons (F-H). In contrast, GFAP positive astrocytes did not express Bcl-2 (I-K). Scale bar: 25 μm (A-C), 12.5 μm (F-K); asterisks (*): merged cell; green and red immunofluorescent markers correspond to Bcl-2 and MAP2, respectively.
Figure 8
Figure 8
Neuronal survival in the ischemic peri-infarct area. Neuronal survival in the ischemic striatal peri-infarct area, visualized with cresyl violet stain, was significantly preserved by low dose minocycline (A: intact control, B: vehicle, C: 20 mg/kg, D: 100 mg/kg). In contrast, high dose minocycline resulted in the collapse of fundamental neuroarchitecture of the striatum accompanied by severe edema. Data are shown as mean values ± SEM (*p < 0.05). Scale bar: 25 μm.

References

    1. Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab. 1999;19:351–369. doi: 10.1097/00004647-199904000-00001.
    1. Zipfel GJ, Lee JM, Choi DW. Reducing calcium overload in the ischemic brain. N Engl J Med. 1999;341:1543–1544. doi: 10.1056/NEJM199911113412011.
    1. Paschen W. Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res Bull. 2000;53:409–413. doi: 10.1016/S0361-9230(00)00369-5.
    1. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407:802–809. doi: 10.1038/35037739.
    1. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14. doi: 10.1097/00004647-200101000-00002.
    1. Horn J, Limburg M. Calcium antagonists for ischemic stroke: a systematic review. Stroke. 2001;32:570–576. doi: 10.1161/hs1001.096009.
    1. Yu SP, Choi DW. Ions, cell volume, and apoptosis. Proc Natl Acad Sci USA. 2000;97:9360–9362. doi: 10.1073/pnas.97.17.9360.
    1. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4:399–415. doi: 10.1038/nrn1106.
    1. Lebeurrier N, Vivien D, Ali C. The complexity of tissue-type plasminogen activator: can serine protease inhibitors help in stroke management? Expert Opin Ther Targets. 2004;8:309–320. doi: 10.1517/14728222.8.4.309.
    1. Clifton GL. Hypothermia and hyperbaric oxygen as treatment modalities for severe head injury. New Horiz. 1995;3:474–478.
    1. De Georgia MA, Krieger DW, Abou-Chebl A, Devlin TG, Jauss M, Davis SM, Koroshetz WJ, Rordorf G, Warach S. Cooling for Acute Ischemic Brain Damage (COOL AID): a feasibility trial of endovascular cooling. Neurology. 2004;63:312–317.
    1. Zhang JH, Lo T, Mychaskiw G, Colohan A. Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology. 2005;12:63–77. doi: 10.1016/j.pathophys.2005.01.003.
    1. Yrjanheikki J, Keinanen R, Pellikka M, Hökfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA. 1998;95:15769–15774. doi: 10.1073/pnas.95.26.15769.
    1. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA. 1999;96:13496–13500. doi: 10.1073/pnas.96.23.13496.
    1. Domercq M, Matute C. Neuroprotection by tetracyclines. Trends Pharmacol Sci. 2004;25:609–612. doi: 10.1016/j.tips.2004.10.001.
    1. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000;6:797–801. doi: 10.1038/80538.
    1. Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales GF, Triarhou LC, Chernet E, Perry KW, Nelson DLG, Luecke S, Phebus LA, Bymaster FP, Paul PM. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci USA. 2001;98:14669–14674. doi: 10.1073/pnas.251341998.
    1. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain. 2003;126:1628–1637. doi: 10.1093/brain/awg178.
    1. Diguet E, Gross CE, Tison F, Bezard E. Rise and fall of minocycline in neuroprotection: need to promote publication of negative results. Exp Neurol1. 2004;89:1–4. doi: 10.1016/j.expneurol.2004.05.016.
    1. Hunter CL, Quintero EM, Gilstrap L, Bhat NR, Granholm AC. Minocycline protects basal forebrain cholinergic neurons from mu p75-saporin immunotoxic lesioning. Eur J Neurosci. 2002;19:3305–3316. doi: 10.1111/j.0953-816X.2004.03439.x.
    1. Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, Yong VW, Patten SB, Duquette P, Antel JP, Mitchell JR. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2004;55:756. doi: 10.1002/ana.20111.
    1. Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM. The promise of minocycline in neurology. Lancet Neurol. 2004;3:744–751. doi: 10.1016/S1474-4422(04)00937-8.
    1. Zemke D, Majid A. The potential of minocycline for neuroprotection in human neurologic disease. Clin Neuropharmacol. 2004;27:293–298. doi: 10.1097/01.wnf.0000150867.98887.3e.
    1. Li WW, Setzu A, Zhao C, Franklin RJM. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol. 2005;158:58–66. doi: 10.1016/j.jneuroim.2004.08.011.
    1. Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol. 2001;166:7527–7533.
    1. Tikka T, Fiebich BL, Goldsteins G, Keinänen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21:2580–2588.
    1. Lin S, Zhang Y, Dodel R, Farlow MR, Paul PM, Du Y. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci Lett. 2001;315:61–64. doi: 10.1016/S0304-3940(01)02324-2.
    1. Pi R, Li W, Lee NT, Chan HH, Pu Y, Chan LN, Sucher NJ, Chang DC, Li M, Han Y. Inocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways. J Neurochem. 2004;91:1219–1230. doi: 10.1111/j.1471-4159.2004.02796.x.
    1. Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem. 2004;279:19948–19954. doi: 10.1074/jbc.M313629200.
    1. Matsuki S, Iuchi Y, Ikeda Y, Sasagawa I, Tomita Y, Fujii J. Suppression of cytochrome c release and apoptosis in testes with heat stress by minocycline. Biochem Biophys Res Commun. 2003;312:843–849. doi: 10.1016/j.bbrc.2003.10.191.
    1. Chae IH, Park KW, Kim HS, Oh BH. Nitric oxide-induced apoptosis is mediated by Bax/Bcl-2 gene expression, transition of cytochrome c, and activation of caspase-3 in rat vascular smooth muscle cells. Clin Chim Acta. 2004;341:83–91. doi: 10.1016/j.cccn.2003.11.009.
    1. Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA. 2004;101:3071–3076. doi: 10.1073/pnas.0306239101.
    1. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;17:74–78. doi: 10.1038/417074a.
    1. Arvin KL, Han BH, Du Y, Lin SZ, Paul SM, Holtzman DM. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol. 2002;52:54–61. doi: 10.1002/ana.10242.
    1. Wang CX, Yang T, Noor R, Shuaib A. Delayed minocycline but not delayed mild hypothermia protects against embolic stroke. BMC Neurol. 2002;2:2. doi: 10.1186/1471-2377-2-2.
    1. Wang CX, Yang T, Shuaib A. Effects of minocycline alone and in combination with mild hypothermia in embolic stroke. Brain Res. 2003;963:327–969. doi: 10.1016/S0006-8993(02)04045-3.
    1. Xu L, Fagan SC, Waller JL, Edwards D, Borlongan CV, Zheng J, Hill WD, Feuerstein G, Hess DC. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 2004;4:7. doi: 10.1186/1471-2377-4-7.
    1. Diguet E, Fernagut PO, Wei X, Du Y, Rouland R, Gross C, Bezard E, Tison F. Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. Eur J Neurosci. 2004;19:3266–3276. doi: 10.1111/j.0953-816X.2004.03372.x.
    1. Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol. 2004;186:248–291. doi: 10.1016/j.expneurol.2003.12.006.
    1. Song Y, Wei EQ, Zhang WP, Zhang WP, Zhang L, Liu JR, Chen Z. Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. Neuroreport. 2004;15:2181–2184. doi: 10.1097/00001756-200410050-00007.
    1. Yang L, Sugama S, Chirichigno JW, Gregorio J, Lorenzl S, Shin DH, Browne SE, Shimizu Y, Joh TH, Beal MF, Albers DS. Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res. 2003;74:278–285. doi: 10.1002/jnr.10709.
    1. Tsuji M, Wilson MA, Lange MS, Johnston MV. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol. 2004;189:58–65. doi: 10.1016/j.expneurol.2004.01.011.
    1. Werz O, Klemm J, Samuelsson B, Radmark O. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci USA. 2000;97:5261–5266. doi: 10.1073/pnas.050588997.
    1. Klegeris A, McGeer PL. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging. 2003;23:787–794. doi: 10.1016/S0197-4580(02)00021-0.
    1. Bigby TD. The yin and the yang of 5-lipoxygenase pathway activation. Mol Pharmacol. 2002;62:200–202. doi: 10.1124/mol.62.2.200.
    1. Wang X, Ellison JA, Siren AL, Lysko PG, Yue TL, Barone FC, Shatzman A, Feuerstein GZ. Prolonged expression of interferon-inducible protein-10 in ischemic cortex after permanent occlusion of the middle cerebral artery in rat. J Neurochem. 1998;71:1194–1204.
    1. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med. 1998;187:2009–2021. doi: 10.1084/jem.187.12.2009.
    1. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999;103:807–815. doi: 10.1172/JCI5150.
    1. Flynn G, Maru S, Loughlin J, Romero IA, Male D. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol. 2003;136:84–93. doi: 10.1016/S0165-5728(03)00009-2.
    1. Schroeter M, Jander S, Witte OW, Stoll G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol. 1994;55:195–203. doi: 10.1016/0165-5728(94)90010-8.
    1. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med. 1996;184:963–969. doi: 10.1084/jem.184.3.963.
    1. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Rev. 2005;48:16–42. doi: 10.1016/j.brainresrev.2004.07.021.
    1. Borlongan CV, Yamamoto M, Takei N, Kumazaki M, Ungsuparkorn C, Hida H, Sanberg PR, Nishino H. Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J. 2000;14:1307–1317. doi: 10.1096/fj.14.10.1307.
    1. Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia. 1999;28:85–96. doi: 10.1002/(SICI)1098-1136(199911)28:2<85::AID-GLIA1>;2-Y.
    1. Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem. 2005;94:819–827. doi: 10.1111/j.1471-4159.2005.03219.x.
    1. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37:1087–1093. doi: 10.1161/.
    1. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, MacArthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R;, Western ALS Study Group Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6:1045–1053. doi: 10.1016/S1474-4422(07)70270-3.
    1. Malagelada C, Xifro X, Badiola N, Sabrià J, Rodríguez-Álvarez J. Histamine H2-receptor antagonist ranitidine protects against neural death induced by oxygen-glucose deprivation. Stroke. 2004;35:2396–2401. doi: 10.1161/01.STR.0000141160.66818.24.
    1. Yasuhara T, Shingo T, Kobayashi K, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci. 2004;19:1494–1504. doi: 10.1111/j.1460-9568.2004.03254.x.
    1. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VMY, Paul R, Sanberg PR. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol. 1998;149:310–321. doi: 10.1006/exnr.1997.6730.
    1. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472–476.
    1. Sanberg PR, Borlongan CV, Othberg AI, Saporta S, Freeman TB, Cameron DF. Testis-derived Sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats. Nat Med. 1997;3:1129–1132. doi: 10.1038/nm1097-1129.
    1. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17:1304–1308.
    1. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thoma GR. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke. 1997;28:2252–2258.
    1. Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann N Y Acad Sci. 2002;962:423–437. doi: 10.1111/j.1749-6632.2002.tb04086.x.
    1. Abercrombie M, Johnson ML. Quantitative histology of Wallerian degeneration I. Nuclear population in rabbit sciatic nerve. J Anat. 1946;80:37–50.
    1. Matsukawa N, Tooyama I, Kimura H, Yamamoto T, Tsugu Y, Oomura Y, Ojika K. Increased expression of hippocampal cholinergic neurostimulating peptide-related components and their messenger RNAs in the hippocampus of aged senescence-accelerated mice. Neuroscience. 1999;88:79–92. doi: 10.1016/S0306-4522(98)00215-2.
    1. Paxinos GW, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press; 1986.

Source: PubMed

3
Subscribe