Effects of Hyperbaric Oxygen Therapy on Mitochondrial Respiration and Physical Performance in Middle-Aged Athletes: A Blinded, Randomized Controlled Trial

Amir Hadanny, Yafit Hachmo, Daniella Rozali, Merav Catalogna, Eldad Yaakobi, Marina Sova, Hadar Gattegno, Ramzia Abu Hamed, Erez Lang, Nir Polak, Mony Friedman, Shachar Finci, Yonatan Zemel, Yair Bechor, Noga Gal, Shai Efrati, Amir Hadanny, Yafit Hachmo, Daniella Rozali, Merav Catalogna, Eldad Yaakobi, Marina Sova, Hadar Gattegno, Ramzia Abu Hamed, Erez Lang, Nir Polak, Mony Friedman, Shachar Finci, Yonatan Zemel, Yair Bechor, Noga Gal, Shai Efrati

Abstract

Introduction: Hyperbaric oxygen therapy (HBOT) has been used to increase endurance performance but has yet to be evaluated in placebo-controlled clinical trials. The current study aimed to evaluate the effect of an intermittent HBOT protocol on maximal physical performance and mitochondrial function in middle-aged master athletes.

Methods: A double-blind, randomized, placebo-controlled study on 37 healthy middle-aged (40-50) master athletes was performed between 2018 and 2020. The subjects were exposed to 40 repeated sessions of either HBOT [two absolute atmospheres (ATA), breathing 100% oxygen for 1 h] or SHAM (1.02ATA, breathing air for 1 h).

Results: Out of 37 athletes, 16 HBOT and 15 SHAM allocated athletes were included in the final analysis. Following HBOT, there was a significant increase in the maximal oxygen consumption (VO2Max) (p = 0.010, effect size(es) = 0.989) and in the oxygen consumption measured at the anaerobic threshold (VO2AT)(es = 0.837) compared to the SHAM group. Following HBOT, there were significant increases in both maximal oxygen phosphorylation capacity (es = 1.085, p = 0.04), maximal uncoupled capacity (es = 0.956, p = 0.02) and mitochondrial mass marker MTG (p = 0.0002) compared to the SHAM sessions.

Conclusion: HBOT enhances physical performance in healthy middle-age master athletes, including VO2max, power and VO2AT. The mechanisms may be related to significant improvements in mitochondrial respiration and increased mitochondrial mass. Trial Registration ClinicalTrials.gov Identifier: https://ichgcp.net/clinical-trials-registry/NCT03524989 (May 15, 2018).

Keywords: Aging athlete; Athletic training; Hyperbaric oxygen therapy; Mitochondrial function; Oxygen consumption.

Conflict of interest statement

Amir Hadanny, Eldad Yaakobi, Yair Bechor and Yonatan Zemel work for AVIV Scientific LTD. Shai Efrati is a shareholder and co-founder of AVIV Scientific LTD. Yafit Hachmo, Daniella Rozali, Merav Catalogna, Marina Sova, Hadar Gattegno, Ramzia Abu Hamed, Erez Lang, Nir Polak, Money Friedman, Shachar Finci and Noga Gal declare they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Athletes’ flowchart
Fig. 2
Fig. 2
SHAM protocol quality control. Rates of group allocation perception by the HBOT group subjects (A) and SHAM group subjects (B)
Fig.3
Fig.3
Mitochondrial mass changes. High-resolution micrograph of muscle staining with MTG demonstrates a significant increase in the mitochondrial mass marker MTG compared to the SHAM group (17.12% ± 20.2 vs. − 8.54 ± 8.41, p = 0.0002). Positive counts are represented by green dots. Greener/brighter images reflect higher counts of MTG staining

References

    1. Booth FW, Narahara KA. Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man. Pflugers Arch. 1974;349(4):319–324. doi: 10.1007/BF00588417.
    1. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59(2):320–327. doi: 10.1152/jappl.1985.59.2.320.
    1. Jacobs RA, Lundby C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol. 2013;114(3):344–350. doi: 10.1152/japplphysiol.01081.2012.
    1. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82.
    1. van Loon LJ, Jeukendrup AE, Saris WH, Wagenmakers AJ. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol (1985). 1999;87(4):1413–20.
    1. Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, et al. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2002;543(Pt 1):191–200. doi: 10.1113/jphysiol.2002.019661.
    1. Robach P, Bonne T, Fluck D, Burgi S, Toigo M, Jacobs RA, et al. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc. 2014;46(10):1936–1945. doi: 10.1249/MSS.0000000000000321.
    1. Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, et al. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1078–R1087. doi: 10.1152/ajpregu.00285.2011.
    1. Sperlich B, Zinner C, Hauser A, Holmberg HC, Wegrzyk J. The impact of hyperoxia on human performance and recovery. Sports Med. 2017;47(3):429–438. doi: 10.1007/s40279-016-0590-1.
    1. Cimino F, Balestra C, Germonpre P, De Bels D, Tillmans F, Saija A, et al. Pulsed high oxygen induces a hypoxic-like response in human umbilical endothelial cells and in humans. J Appl Physiol (1985). 2012;113(11):1684–9.
    1. Sunkari VG, Lind F, Botusan IR, Kashif A, Liu ZJ, Yla-Herttuala S, et al. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 2015;23(1):98–103.
    1. Milovanova TN, Bhopale VM, Sorokina EM, Moore JS, Hunt TK, Hauer-Jensen M, et al. Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol (1985). 2009;106(2):711–28.
    1. Yang Y, Wei H, Zhou X, Zhang F, Wang C. Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. NeuroReport. 2017;28(18):1232–1238. doi: 10.1097/WNR.0000000000000901.
    1. Hadanny A, Efrati S. The hyperoxic-hypoxic paradox. Biomolecules. 2020;10(6).
    1. Cabric M, Medved R, Denoble P, Zivkovic M, Kovacevic H. Effect of hyperbaric oxygenation on maximal aerobic performance in a normobaric environment. J Sports Med Phys Fitness. 1991;31(3):362–366.
    1. Burgos C, Henriquez-Olguin C, Andrade DC, Ramirez-Campillo R, Araneda OF, White A, et al. Effects of exercise training under hyperbaric oxygen on oxidative stress markers and endurance performance in young soccer players: a pilot study. J Nutr Metab. 2016;2016:5647407. doi: 10.1155/2016/5647407.
    1. Howley ET, Bassett DR, Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–1301. doi: 10.1249/00005768-199509000-00009.
    1. Ghosh AK. Anaerobic threshold: its concept and role in endurance sport. Malays J Med Sci MJMS. 2004;11(1):24–36.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Wen D, Utesch T, Wu J, Robertson S, Liu J, Hu G, et al. Effects of different protocols of high intensity interval training for VO2max improvements in adults: a meta-analysis of randomised controlled trials. J Sci Med Sport. 2019;22(8):941–947. doi: 10.1016/j.jsams.2019.01.013.
    1. Colin Pennington MSK. The exercise effect on the anaerobic threshold in response to graded exercise. Int J Health Sci. 2015;3(1).
    1. Albouaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and its application. Heart. 2007;93(10):1285–1292.
    1. Suzuki J. Endurance performance is enhanced by intermittent hyperbaric exposure via up-regulation of proteins involved in mitochondrial biogenesis in mice. Physiol Rep. 2017;5(15).
    1. Kurt B, Kurt Y, Karslioglu Y, Topal T, Erdamar H, Korkmaz A, et al. Effects of hyperbaric oxygen on energy production and xanthine oxidase levels in striated muscle tissue of healthy rats. J Clin Neurosci. 2008;15(4):445–450. doi: 10.1016/j.jocn.2007.01.010.
    1. DeCato TW, Bradley SM, Wilson EL, Harlan NP, Villela MA, Weaver LK, et al. Effects of sprint interval training on cardiorespiratory fitness while in a hyperbaric oxygen environment. Undersea Hyperb Med. 2019;46(2):117–124. doi: 10.22462/04.06.2019.4.
    1. Bassett DR, Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84. doi: 10.1097/00005768-200001000-00012.
    1. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44. doi: 10.1113/jphysiol.2007.143834.
    1. Weibel ER, Hoppeler H. Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol. 2005;208(Pt 9):1635–1644. doi: 10.1242/jeb.01548.
    1. Van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JA. Leg and arm lactate and substrate kinetics during exercise. Am J Physiol Endocrinol Metab. 2003;284(1):E193–205. doi: 10.1152/ajpendo.00273.2002.
    1. Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992;24(7):782–788. doi: 10.1249/00005768-199207000-00008.
    1. van der Zwaard S, de Ruiter CJ, Noordhof DA, Sterrenburg R, Bloemers FW, de Koning JJ, et al. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists. J Appl Physiol (1985). 2016;121(3):636–45.
    1. Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 2019;76(9):1759–1777. doi: 10.1007/s00018-019-03039-y.
    1. Balestra C, Germonpre P. Hypoxia, a multifaceted phenomenon: the example of the "normobaric oxygen paradox". Eur J Appl Physiol. 2012;112(12):4173–4175. doi: 10.1007/s00421-012-2392-y.
    1. Fratantonio D, Virgili F, Zucchi A, Lambrechts K, Latronico T, Lafere P, et al. Increasing oxygen partial pressures induce a distinct transcriptional response in human PBMC: a pilot study on the "normobaric oxygen paradox". Int J Mol Sci. 2021;22(1).
    1. De Bels D, Tillmans F, Corazza F, Bizzari M, Germonpre P, Radermacher P, et al. Hyperoxia alters ultrastructure and induces apoptosis in leukemia cell lines. Biomolecules. 2020;10(2).
    1. Kappler M, Taubert H, Eckert AW. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365(19):1845–6; author reply 6.
    1. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009;20(15):3525–3532. doi: 10.1091/mbc.e09-03-0252.
    1. Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual role of reactive oxygen species in muscle function: can antioxidant dietary supplements counteract age-related sarcopenia? Int J Mol Sci. 2019;20(15).
    1. Doherty E, Perl A. Measurement of mitochondrial mass by flow cytometry during oxidative stress. React Oxyg Species (Apex) 2017;4(10):275–283.
    1. Jacobs RA, Rasmussen P, Siebenmann C, Diaz V, Gassmann M, Pesta D, et al. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol (1985). 2011;111(5):1422–30.

Source: PubMed

3
Subscribe