Two faces of p53: aging and tumor suppression

Francis Rodier, Judith Campisi, Dipa Bhaumik, Francis Rodier, Judith Campisi, Dipa Bhaumik

Abstract

The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.

Figures

Figure 1.
Figure 1.
DNA damage response signaling pathways leading to p53 activation: DNA damage activates PIKK (ATM, ATR and DNA-PK), which leads to activation of checkpoint kinases (CHK1, CHK2) and p53. Activated p53 integrates the output of the DDR signaling network and triggers various cell fate decisions.
Figure 2.
Figure 2.
The impact of p53-mediated cell fate decisions on tissue homeostasis and organismal longevity: In the presence of severe DNA damage, effectors triggered by p53 cause transient cell growth arrest, apoptosis or senescence, which in turn promote tissue atrophy and organismal aging. In contrast, loss of p53 function prevents critical cell fate decisions and dramatically favors cancer.

References

    1. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70.
    1. Campisi J. Cancer and ageing: rival demons? Nat. Rev. 2003;3:339–349.
    1. Vijg J., Suh Y. Genetics of longevity and aging. Annu. Rev. Med. 2005;56:193–212.
    1. Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415:45–53.
    1. Dumble M., Moore L., Chambers S.M., Geiger H., Van Zant G., Goodell M.A., Donehower L.A. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood. 2007;109:1736–1742.
    1. Maier B., Gluba W., Bernier B., Turner T., Mohammad K., Guise T., Sutherland A., Thorner M., Scrable H. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004;18:306–319.
    1. Balducci L., Ershler W.B. Cancer and ageing: a nexus at several levels. Nat. Rev. 2005;5:655–662.
    1. Gessert C.E., Elliott B.A., Haller I.V. Dying of old age: an examination of death certificates of Minnesota centenarians. J. Am. Geriatr. Soc. 2002;50:1561–1565.
    1. Sedelnikova O.A., Horikawa I., Zimonjic D.B., Popescu N.C., Bonner W.M., Barrett J.C. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 2004;6:168–170.
    1. Herbig U., Ferreira M., Condel L., Carey D., Sedivy J.M. Cellular senescence in aging primates. Science (New York, N.Y.) 2006;311:1257.
    1. Jeyapalan J.C., Ferreira M., Sedivy J.M., Herbig U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 2007;128:36–44.
    1. Vijg J., Dolle M.E. Large genome rearrangements as a primary cause of aging. Mech. Ageing Dev. 2002;123:907–915.
    1. Bahar R., Hartmann C.H., Rodriguez K.A., Denny A.D., Busuttil R.A., Dolle M.E., Calder R.B., Chisholm G.B., Pollock B.H., et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–1014.
    1. Carlson M.E., Conboy I.M. Loss of stem cell regenerative capacity within aged niches. Aging Cell. 2007;6:371–382.
    1. Rossi D.J., Bryder D., Seita J., Nussenzweig A., Hoeijmakers J., Weissman I.L. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–729.
    1. Matoba S., Kang J.G., Patino W.D., Wragg A., Boehm M., Gavrilova O., Hurley P.J., Bunz F., Hwang P.M. p53 regulates mitochondrial respiration. Science (New York, N.Y.) 2006;312:1650–1653.
    1. Bensaad K., Tsuruta A., Selak M.A., Vidal M.N., Nakano K., Bartrons R., Gottlieb E., Vousden K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–120.
    1. Sablina A.A., Budanov A.V., Ilyinskaya G.V., Agapova L.S., Kravchenko J.E., Chumakov P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med. 2005;11:1306–1313.
    1. Balaban R.S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–495.
    1. Bokov A., Chaudhuri A., Richardson A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 2004;125:811–826.
    1. Malkin D., Li F.P., Strong L.C., Fraumeni J.F., Jr, Nelson C.E., Kim D.H., Kassel J., Gryka M.A., Bischoff F.Z., et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science (New York, N.Y.) 1990;250:1233–1238.
    1. Donehower L.A., Harvey M., Slagle B.L., McArthur M.J., Montgomery C.A., Jr, Butel J.S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–221.
    1. Wu C., Miloslavskaya I., Demontis S., Maestro R., Galaktionov K. Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature. 2004;432:640–645.
    1. Mallette F.A., Gaumont-Leclerc M.F., Ferbeyre G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 2007;21:43–48.
    1. Di Micco R., Fumagalli M., Cicalese A., Piccinin S., Gasparini P., Luise C., Schurra C., Garre M., Nuciforo P.G., et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–642.
    1. Bartkova J., Rezaei N., Liontos M., Karakaidos P., Kletsas D., Issaeva N., Vassiliou L.V., Kolettas E., Niforou K., et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–637.
    1. Green D.R., Chipuk J.E. p53 and metabolism: inside the TIGAR. Cell. 2006;126:30–32.
    1. Bakkenist C.J., Kastan M.B. Initiating cellular stress responses. Cell. 2004;118:9–17.
    1. Zou L., Elledge S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science (New York, N.Y.) 2003;300:1542–1548.
    1. Cortez D. Unwind and slow down: checkpoint activation by helicase and polymerase uncoupling. Genes Dev. 2005;19:1007–1012.
    1. Marini F., Nardo T., Giannattasio M., Minuzzo M., Stefanini M., Plevani P., Falconi M.M. DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc. Natl Acad. Sci. USA. 2006;103:17325–17330.
    1. Jiang G., Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol. Cell. Biol. 2006;26:39–49.
    1. Bassing C.H., Alt F.W. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 2004;3:781–796.
    1. Pluquet O., Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett. 2001;174:1–15.
    1. Celeste A., Petersen S., Romanienko P.J., Fernandez-Capetillo O., Chen H.T., Sedelnikova O.A., Reina-San-Martin B., Coppola V., Meffre E., et al. Genomic instability in mice lacking histone H2AX. Science (New York, N.Y.) 2002;296:922–927.
    1. Lavin M.F., Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ. 2006;13:941–950.
    1. Marchenko N.D., Zaika A., Moll U.M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 2000;275:16202–16212.
    1. Murphy M.E., Leu J.I., George D.L. p53 moves to mitochondria: a turn on the path to apoptosis. Cell cycle (Georgetown, Tex.) 2004;3:836–839.
    1. Al Rashid S.T., Dellaire G., Cuddihy A., Jalali F., Vaid M., Coackley C., Folkard M., Xu Y., Chen B.P., et al. Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res. 2005;65:10810–10821.
    1. Ho J., Benchimol S. Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ. 2003;10:404–408.
    1. Oren M. Decision making by p53: life, death and cancer. Cell Death Differ. 2003;10:431–442.
    1. Guillouf C., Grana X., Selvakumaran M., De Luca A., Giordano A., Hoffman B., Liebermann D.A. Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest. Blood. 1995;85:2691–2698.
    1. Danial N.N., Korsmeyer S.J. Cell death: critical control points. Cell. 2004;116:205–219.
    1. Lowe S.W., Schmitt E.M., Smith S.W., Osborne B.A., Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993;362:847–849.
    1. Di Leonardo A., Linke S.P., Clarkin K., Wahl G.M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8:2540–2551.
    1. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–522.
    1. Beausejour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22:4212–4222.
    1. Kishi S. Functional aging and gradual senescence in zebrafish. Ann. NY Acad. Sci. 2004;1019:521–526.
    1. Melk A., Kittikowit W., Sandhu I., Halloran K.M., Grimm P., Schmidt B.M., Halloran P.F. Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int. 2003;63:2134–2143.
    1. Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA. 1995;92:9363–9367.
    1. Wang Y., Schulte B.A., LaRue A.C., Ogawa M., Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 2006;107:358–366.
    1. Janzen V., Forkert R., Fleming H.E., Saito Y., Waring M.T., Dombkowski D.M., Cheng T., DePinho R.A., Sharpless N.E., et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443:421–426.
    1. Molofsky A.V., Slutsky S.G., Joseph N.M., He S., Pardal R., Krishnamurthy J., Sharpless N.E., Morrison S.J. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 2006;443:448–452.
    1. Parrinello S., Coppe J.P., Krtolica A., Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 2005;118:485–496.
    1. Liu D., Hornsby P.J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007;67:3117–3126.
    1. Lowe S.W., Ruley H.E., Jacks T., Housman D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–967.
    1. Lotem J., Sachs L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood. 1993;82:1092–1096.
    1. Christophorou M.A., Martin-Zanca D., Soucek L., Lawlor E.R., Brown-Swigart L., Verschuren E.W., Evan G.I. Temporal dissection of p53 function in vitro and in vivo. Nat. Genet. 2005;37:718–726.
    1. Christophorou M.A., Ringshausen I., Finch A.J., Swigart L.B., Evan G.I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature. 2006;443:214–217.
    1. Komarova E.A., Kondratov R.V., Wang K., Christov K., Golovkina T.V., Goldblum J.R., Gudkov A.V. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene. 2004;23:3265–3271.
    1. Vogel H., Lim D.S., Karsenty G., Finegold M., Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA. 1999;96:10770–10775.
    1. DePinho R.A. The age of cancer. Nature. 2000;408:248–254.
    1. Kuro-o M. Disease model: human aging. Trends Mol. Med. 2001;7:179–181.
    1. de Boer J., Andressoo J.O., de Wit J., Huijmans J., Beems R.B., van Steeg H., Weeda G., van der Horst G.T., van Leeuwen W., et al. Premature aging in mice deficient in DNA repair and transcription. Science (New York, N.Y.) 2002;296:1276–1279.
    1. Chechlacz M., Vemuri M.C., Naegele J.R. Role of DNA-dependent protein kinase in neuronal survival. J. Neurochem. 2001;78:141–154.
    1. Lim D.S., Vogel H., Willerford D.M., Sands A.T., Platt K.A., Hasty P. Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol. Cell. Biol. 2000;20:3772–3780.
    1. Marrone A., Walne A., Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev. 2005;15:249–257.
    1. Rodier F., Kim S.H., Nijjar T., Yaswen P., Campisi J. Cancer and aging: the importance of telomeres in genome maintenance. Int J. Biochem. Cell Boil. 2005;37:977–990.
    1. d'Adda di Fagagna F., Reaper P.M., Clay-Farrace L., Fiegler H., Carr P., Von Zglinicki T., Saretzki G., Carter N.P., Jackson S.P. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–198.
    1. von Zglinicki T., Saretzki G., Ladhoff J., d'Adda di Fagagna F., Jackson S.P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 2005;126:111–117.
    1. Blasco M.A., Lee H.W., Hande M.P., Samper E., Lansdorp P.M., DePinho R.A., Greider C.W. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91:25–34.
    1. Rudolph K.L., Chang S., Lee H.W., Blasco M., Gottlieb G.J., Greider C., DePinho R.A. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96:701–712.
    1. Chin L., Artandi S.E., Shen Q., Tam A., Lee S.L., Gottlieb G.J., Greider C.W., DePinho R.A. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97:527–538.
    1. Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., Stewart C.L., Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell. Biol. 1999;147:913–920.
    1. Pendas A.M., Zhou Z., Cadinanos J., Freije J.M., Wang J., Hultenby K., Astudillo A., Wernerson A., Rodriguez F., et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 2002;31:94–99.
    1. Bergo M.O., Gavino B., Ross J., Schmidt W.K., Hong C., Kendall L.V., Mohr A., Meta M., Genant H., et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA. 2002;99:13049–13054.
    1. Chen L., Lee L., Kudlow B.A., Dos Santos H.G., Sletvold O., Shafeghati Y., Botha E.G., Garg A., Hanson N.B., et al. LMNA mutations in atypical Werner's syndrome. Lancet. 2003;362:440–445.
    1. Eriksson M., Brown W.T., Gordon L.B., Glynn M.W., Singer J., Scott L., Erdos M.R., Robbins C.M., Moses T.Y., et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293–298.
    1. Varela I., Cadinanos J., Pendas A.M., Gutierrez-Fernandez A., Folgueras A.R., Sanchez L.M., Zhou Z., Rodriguez F.J., Stewart C.L., et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature. 2005;437:564–568.
    1. Scaffidi P., Misteli T. Lamin A-dependent nuclear defects in human aging. Science (New York, N.Y.) 2006;312:1059–1063.
    1. Liu B., Wang J., Chan K.M., Tjia W.M., Deng W., Guan X., Huang J.D., Li K.M., Chau P.Y., et al. Genomic instability in laminopathy-based premature aging. Nat. Med. 2005;11:780–785.
    1. Zhang J., Powell S.N. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol. Cancer Res. 2005;3:531–539.
    1. Xu X., Qiao W., Linke S.P., Cao L., Li W.M., Furth P.A., Harris C.C., Deng C.X. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 2001;28:266–271.
    1. Cao L., Li W., Kim S., Brodie S.G., Deng C.X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 2003;17:201–213.
    1. Cao L., Kim S., Xiao C., Wang R.H., Coumoul X., Wang X., Li W.M., Xu X.L., De Soto J.A., et al. ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency. EMBO J. 2006;25:2167–2177.
    1. Gentry A., Venkatachalam S. Complicating the role of p53 in aging. Aging Cell. 2005;4:157–160.
    1. Guarente L., Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–262.
    1. Bluher M., Kahn B.B., Kahn C.R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science (New York, N.Y.) 2003;299:572–574.
    1. Garcia-Cao I., Garcia-Cao M., Martin-Caballero J., Criado L.M., Klatt P., Flores J.M., Weill J.C., Blasco M.A., Serrano M. "Super p53" mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 2002;21:6225–6235.
    1. Garcia-Cao I., Garcia-Cao M., Tomas-Loba A., Martin-Caballero J., Flores J.M., Klatt P., Blasco M.A., Serrano M. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep. 2006;7:546–552.
    1. Matheu A., Maraver A., Klatt P., Flores I., Garcia-Cao I., Borras C., Flores J.M., Vina J., Blasco M.A., et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature. 2007;448:375–379.
    1. Jones S.N., Roe A.E., Donehower L.A., Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206–208.
    1. Montes de Oca Luna R., Wagner D.S., Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–206.
    1. Ringshausen I., O'Shea C.C., Finch A.J., Swigart L.B., Evan G.I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell. 2006;10:501–514.
    1. Mendrysa S.M., O'Leary K.A., McElwee M.K., Michalowski J., Eisenman R.N., Powell D.A., Perry M.E. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 2006;20:16–21.
    1. Mendrysa S.M., Perry M.E. Tumor suppression by p53 without accelerated aging: just enough of a good thing? Cell cycle (Georgetown, Tex.) 2006;5:714–717.
    1. Bourdon J.C., Fernandes K., Murray-Zmijewski F., Liu G., Diot A., Xirodimas D.P., Saville M.K., Lane D.P. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005;19:2122–2137.
    1. Matlashewski G.J., Tuck S., Pim D., Lamb P., Schneider J., Crawford L.V. Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell. Biol. 1987;7:961–963.
    1. Bonafe M., Salvioli S., Barbi C., Trapassi C., Tocco F., Storci G., Invidia L., Vannini I., Rossi M., et al. The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death Differ. 2004;11:962–973.
    1. Dumont P., Leu J.I., Della Pietra A.C., III, George D.L., Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 2003;33:357–365.
    1. van Heemst D., Mooijaart S.P., Beekman M., Schreuder J., de Craen A.J., Brandt B.W., Slagboom P.E., Westendorp R.G. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp. Gerontol. 2005;40:11–15.
    1. Orsted D.D., Bojesen S.E., Tybjaerg-Hansen A., Nordestgaard B.G. Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J. Exp. Med. 2007;204:1295–1301.

Source: PubMed

3
Subscribe