Plasticity of brain networks in a randomized intervention trial of exercise training in older adults

Michelle W Voss, Ruchika S Prakash, Kirk I Erickson, Chandramallika Basak, Laura Chaddock, Jennifer S Kim, Heloisa Alves, Susie Heo, Amanda N Szabo, Siobhan M White, Thomas R Wójcicki, Emily L Mailey, Neha Gothe, Erin A Olson, Edward McAuley, Arthur F Kramer, Michelle W Voss, Ruchika S Prakash, Kirk I Erickson, Chandramallika Basak, Laura Chaddock, Jennifer S Kim, Heloisa Alves, Susie Heo, Amanda N Szabo, Siobhan M White, Thomas R Wójcicki, Emily L Mailey, Neha Gothe, Erin A Olson, Edward McAuley, Arthur F Kramer

Abstract

Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction.

Keywords: aerobic fitness; aging; default mode network; executive function; exercise; fMRI; functional connectivity.

Figures

Figure 1
Figure 1
Mean statistical maps for the average of old and young subjects, for cognitive networks, are illustrated in Figure 1A, followed by statistical maps for the contrasts of Young > Old and Old > Young in Figures 1B and 1C, respectively.
Figure 2
Figure 2
Significant effects in favor of the FTB group, in regions reflecting age-related network disruption, in the DMN. (A, B) and the FP network (C), are visualized by plotting marginal group means from the analysis at the corresponding time point (error bars represent 1 ± standard error of the marginal mean); *p < 0.05. Refer to Table 3 for anatomical description and MNI coordinates of ROIs represented by black circles. For all brains, R = R and L = L.
Figure 3
Figure 3
Significant effects in favor of the walking group, in regions reflecting age-related network disruption, in the DMN. (A–C) and the FE network (D), are visualized by plotting marginal group means from the analysis at the corresponding time point (error bars represent 1 ± standard error of the marginal mean); *p < 0.05. Refer to Table 3 for anatomical description and MNI coordinates of ROIs represented by black circles. For all brains, R = R and L = L.
Figure 4
Figure 4
Exercise training-related changes in functional connectivity in regions where old started greater than young. Significant effects, from FE network, visualized by plotting marginal group means from the analysis at the corresponding time point (error bars represent 1 + standard error of the marginal mean); *p < 0.05. Refer to Table 4 for anatomical description and MNI coordinates of ROIs represented by black circles. For all brains, R = R and L = L.

References

    1. Adkins D. L., Boychuk J., Remple M. S., Kleim J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J. Appl. Physiol. 101, 1776–178210.1152/japplphysiol.00515.2006
    1. Adlard P. A., Perreau V. M., Cotman C. W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol. Aging 26, 511–52010.1016/j.neurobiolaging.2004.05.006
    1. Albert N. B., Robertson E. M., Miall R. C. (2009). The resting human brain and motor learning. Curr. Biol. 19, 1023–102710.1016/j.cub.2009.04.028
    1. Andrews-Hanna J. R., Snyder A. Z., Vincent J. L., Lustig C., Head D., Raichle M. E., Buckner R.L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–93510.1016/j.neuron.2007.10.038
    1. Barnes D. E., Yaffe K., Satariano W. A., Tager I. B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 51, 459–46510.1046/j.1532-5415.2003.51153.x
    1. Basak C., Boot W. R., Voss M. W., Kramer A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol. Aging 23, 765–77710.1037/a0013494
    1. Beckmann C. F., Jerome G. J., Smith S. M. (2003). General multilevel linear modeling for group analysis in fMRI. NeuroImage 20, 1052–106310.1016/S1053-8119(03)00435-X
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31, 1536–154810.1016/j.neuroimage.2006.02.048
    1. Black J. E., Isaacs K. R., Anderson B. J., Alcantara A. A., Greenough W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. U.S.A. 87, 5568–557210.1073/pnas.87.14.5568
    1. Bopp K. L., Verhaeghen P. (2005). Aging and verbal memory span: a meta-analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, P223–P233
    1. Borg G. (1985). An Introduction to Borg's RPE-Scale. Ithaca, NY: Mouvement
    1. Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–3810.1196/annals.1440.011
    1. Carlson M. C., Erickson K. I., Kramer A. F., Voss M. W., Bolea N., Mielke M., McGill S., Rebok G. W., Seeman T., Fried L. P. (2009). Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1275–128210.1093/gerona/glp117
    1. CDC (2007). The State of Aging and Health in America 2007. Washington, D.C.: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention
    1. Chang C., Cunningham J. P., Glover G. H. (2009). Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage 44, 857–86910.1016/j.neuroimage.2008.09.029
    1. Chen K. S., Masliah E., Mallory M., Gage F. H. (1995). Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human nerve growth factor infusion. Neuroscience 68, 19–2710.1016/0306-4522(95)00099-5
    1. Colcombe S., Erickson K., Scalf P., Kim J., Prakash R., Mcauley E., Elavsky S., Marquez D., Hu L., Kramer A. (2006). Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1166.
    1. Colcombe S. J., Erickson K. I., Raz N., Webb A. G., Cohen N. J., McAuley E., Kramer A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 58, 176–180
    1. Colcombe S. J., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–13010.1111/1467-9280.t01-1-01430
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychol. Aging 20, 363–37510.1037/0882-7974.20.3.363
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., Webb A., Jerome G. J., Marquez D. X., Elavsky S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. U.S.A. 101, 3316–332110.1073/pnas.0400266101
    1. Cole M. W., Pathak S., Schneider W. (2010). Identifying the brain's most globally connected regions. NeuroImage 49, 3132–314810.1016/j.neuroimage.2009.11.001
    1. Corbetta M., Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 215–22910.1038/nrn755
    1. Cotman C. W., Berchtold N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–30110.1016/S0166-2236(02)02143-4
    1. Creer D. J., Romberg C., Saksida L. M., van Praag H., Bussey T. J. (2010). Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. U.S.A. 107, 2367–237210.1073/pnas.0911725107
    1. Dahlin E., Neely A. S., Larsson A., Bäckman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320, 1510–151210.1126/science.1155466
    1. Damoiseaux J. S., Beckmann C. F., Arigita E. J. S., Barkhof F., Scheltens P., Stam C. J., Smith S. M., Rombouts S. A. R. B. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex 18, 1856–186410.1093/cercor/bhm207
    1. Davis S. W., Dennis N. A., Buchler N. G., White L. E., Madden D. J., Cabeza R. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage 46, 530–54110.1016/j.neuroimage.2009.01.068
    1. de Munck J., Goncalves S., Faes T. (2008). A study of the brain's resting state based on alpha band power, heart rate and fMRI. NeuroImage 42, 112–12110.1016/j.neuroimage.2008.04.244
    1. Dennis N. A., Hayes S. M., Prince S. E., Madden D. J., Huettel S. A., Cabeza R. (2008). Effects of aging on neural correlates of successful item and source memory encoding. J. Exp. Psychol. Learn. Mem. Cogn. 34, 791–80810.1037/0278-7393.34.4.791
    1. Dosenbach N. U. F., Visscher K. M., Palmer E. D., Miezin F. M., Wenger K. K., Kang H. C., Burgund E. D., Grimes A. L., Schlaggar B. L., Petersen S. E. (2006). A core system for the implementation of task sets. Neuron 50, 799–81210.1016/j.neuron.2006.04.031
    1. Erickson K. I., Colcombe S. J., Wadhwa R., Bherer L., Peterson M. S., Scalf P. E., Kim J. S., Alvarado M., Kramer A. F. (2007). Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging 28, 272–28310.1016/j.neurobiolaging.2005.12.012
    1. Erickson K., Prakash R., Voss M., Chaddock L., Hu L., Morris K., White S., Wójcicki T., McAuley E., Kramer A. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19, 1030–103910.1002/hipo.20547
    1. Erickson K. I., Prakash R. S., Voss M. W., Chaddock L. C., Heo S., McLaren M., Pence B. D., Martin S. A., Vieira V. J., Woods J. A., McAuley E., Kramer A. F. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume, J. Neurosci. 30, 5368–537510.1523/JNEUROSCI.6251-09.2010
    1. Fabel K., Wolf S. A., Ehninger D., Babu H., Leal-Galicia P., Kempermann G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurogenesis 1, 1–710.3389/neuro.22.002.2009
    1. Fair D. A., Schlaggar B. L., Cohen A. L., Miezin F. M., Dosenbach N. U. F., Wenger K. K., Fox M. D., Snyder A. Z., Raichle M. E., Petersen S. E. (2007). A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage 35, 396–40510.1016/j.neuroimage.2006.11.051
    1. Farmer J., Zhao X., Van Praag H., Wodtke K., Gage F. H., Christie B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–7910.1016/j.neuroscience.2003.09.029
    1. Fjell A., Westlye L., Amlien I., Espeseth T., Reinvang I., Raz N., Agartz I., Salat D., Greve D., Fischl B., Dale A., Walhovd K. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cereb. Cortex 49, 1820–1830
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–967810.1073/pnas.0504136102
    1. Gomez-Pinilla F., Vaynman S., Ying Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur. J. Neurosci. 28, 2278–228710.1111/j.1460-9568.2008.06524.x
    1. Grady C. L., McIntosh A. R., Craik F. I. M. (2003). Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus 13, 572–58610.1002/hipo.10114
    1. Greicius M., Srivastava G., Reiss A., Menon V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–464210.1073/pnas.0308627101
    1. Hampson M., Driesen N. R., Skudlarski P., Gore J. C., Constable R. T. (2006). Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–1334310.1523/JNEUROSCI.3408-06.2006
    1. Hayasaka S., Laurienti P. J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. NeuroImage 50, 499–50810.1016/j.neuroimage.2009.12.051
    1. He W., Sengupta M., Velkoff V. A., DeBarros K. A. (2005). 65+ In the United States: 2005. Washington, D.C.: U.S. Census Bureau
    1. Hedden T., Van Dijk K. R. A., Becker J. A., Mehta A., Sperling R. A., Johnson K. A., Buckner R. L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–1269410.1523/JNEUROSCI.3189-09.2009
    1. Isaacs K. R., Anderson B. J., Alcantara A. A., Black J. E., Greenough W. T. (1992). Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12, 110–119
    1. Jenkinson M., Bannister P. R., Brady J. M., Smith S. M. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–84110.1016/S1053-8119(02)91132-8
    1. Karbach J., Kray J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12, 978–99010.1111/j.1467-7687.2009.00846.x
    1. Kelly C. A. M., Uddin L. Q., Biswal B. B., Castellanos F. X., Milham M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage 39, 527–53710.1016/j.neuroimage.2007.08.008
    1. Kempermann G. (2008). The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163–16910.1016/j.tins.2008.01.002
    1. Kleim J. A., Cooper N. R., VandenBerg P. M. (2002). Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 934, 1–610.1016/S0006-8993(02)02239-4
    1. Kramer A. F., Hahn S., Gopher D. (1999). Task coordination and aging: explorations of executive control processes in the task switching paradigm. Acta Psychol. 101, 339–37810.1016/S0001-6918(99)00011-6
    1. Larsen J. O., Skalicky M., Viidik A. (2000). Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J. Comp. Neurol. 428, 213–22210.1002/1096-9861(20001211)428:2<213::AID-CNE2>;2-Q
    1. Larson E. B., Wang L., Bowen J. D., McCormick W. C., Teri L., Crane P., Kukull W. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 144, 73–81
    1. Lewis C. M., Baldassarre A., Committeri G., Romani G. L., Corbetta M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. U.S.A. 106, 17558–1756310.1073/pnas.0902455106
    1. Lindsay J., Laurin D., Verreault R., Hébert R., Helliwell B., Hill G.B., McDowell I. (2002). Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am. J. Epidemiol. 156, 445–45310.1093/aje/kwf074
    1. Lustig C., Snyder A. Z., Bhakta M., O'Brien K. C., McAvoy M., Raichle M. E., Morris J. C., Buckner R. L. (2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proc. Natl. Acad. Sci. U.S.A. 100, 14504–1450910.1073/pnas.2235925100
    1. MacRae P. G., Spirduso W. W., Cartee G. D., Farrar R. P., Wilcox R. E. (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci. Lett. 79, 138–14410.1016/0304-3940(87)90686-0
    1. Madden D., Spaniol J., Whiting W., Bucur B., Provenzale J., Cabeza R., White L., Huettel S. (2007). Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiol. Aging 28, 459–47610.1016/j.neurobiolaging.2006.01.005
    1. McCloskey D. P., Adamo D. S., Anderson B. J. (2001). Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Res. 891, 168–17510.1016/S0006-8993(00)03200-5
    1. Miller R. (1991). Cortico-Hippocampal Interplay, Vol 17. Heidelberg: Springer-Verlag
    1. Miller S. L., Celone K., DePeau K., Diamond E., Dickerson B. C., Rentz D., Pihlajamaki M., Sperling R. A. (2008). Age-related impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc. Natl. Acad. Sci. U.S.A. 105, 2181–218610.1073/pnas.0706818105
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–10010.1006/cogp.1999.0734
    1. Neeper S. A., Gómez-Pinilla F., Choi J., Cotman C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–5610.1016/0006-8993(96)00273-9
    1. NIH (2007). 2005–2006 Progress Report on Alzheimer's Disease. Washington, D.C.: U.S. Department of Health and Human Services, National Institute on Aging and National Institutes of Health
    1. O'Sullivan M., Jones D. K., Summers P. E., Morris R. G., Williams S. C., Markus H. S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57, 632–638
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–11310.1016/0028-3932(71)90067-4
    1. Park D. C., Reuter-Lorenz P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–19610.1146/annurev.psych.59.103006.093656
    1. Pashler H. (2000). “Task switching and multi-task performance,” in Attention and Performance XVIII: Control of Cognitive Processes, eds Monsell S., Driver J. (Cambridge: MIT Press; ), pp. 277–309
    1. Pereira A. C., Huddleston D. E., Brickman A. M., Sosunov A. A., Hen R., McKhann G. M., Sloan R., Gage F. H., Brown T. R., Small S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 104, 5638–564310.1073/pnas.0611721104
    1. Persson J., Lustig C., Nelson J. K., Reuter-Lorenz P. A. (2007). Age differences in deactivation: a link to cognitive control? J. Cogn. Neurosci. 19, 1021–103210.1162/jocn.2007.19.6.1021
    1. Persson J., Nyberg L., Lind J., Larsson A., Nilsson L. -G., Ingvar M., Buckner R. L. (2006). Structure-function correlates of cognitive decline in aging. Cereb. Cortex 16, 907–91510.1093/cercor/bhj036
    1. Raz N., Lindenberger U., Rodrigue K. M., Kennedy K. M., Head D., Williamson A., Dahle C., Gerstorf D., Acker J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–168910.1093/cercor/bhi044
    1. Raz N., Rodrigue K. M., Acker J. D. (2003). Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. Behav. Neurosci. 117, 1169–118010.1037/0735-7044.117.6.1169
    1. Richards M., Hardy R., Wadsworth M. E. J. (2003). Does active leisure protect cognition? Evidence from a national birth cohort. Soc. Sci. Med. 56, 785–79210.1016/S0277-9536(02)00075-8
    1. Rushworth M. F. S., Walton M. E., Kennerley S. W., Bannerman D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8, 410–41710.1016/j.tics.2004.07.009
    1. Schilbach L., Eickhoff S. B., Rotarska-Jagiela A., Fink G. R., Vogeley K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn. 17, 457–46710.1016/j.concog.2008.03.013
    1. Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., Reiss A. L., Greicius M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–235610.1523/JNEUROSCI.5587-06.2007
    1. Shehzad Z., Kelly A., Reiss P., Gee D., Gotimer K., Uddin L., Lee S., Margulies D., Roy A., Biswal B., Petkova E., Castellanos F., Milham M. (2009). The resting brain: unconstrained yet reliable. Cereb. Cortex 19, 2209–222910.1093/cercor/bhn256
    1. Sheikh J. I., Yesavage J. A. (1986). “Geriatric depression scale (GDS): recent evidence and development of a shorter version,” in Clinical Gerontology: A Guide to Assessment and Intervention, ed. Brink T. L. (New York: The Haworth Press; ), 165–173
    1. Smith S. M. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–15510.1002/hbm.10062
    1. Sonntag W. E., Ramsey M., Carter C. S. (2005). Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195–21210.1016/j.arr.2005.02.001
    1. Stern Y., Sano M., Paulsen J., Mayeux R. (1987). Modified mini-mental state examination: validity and reliability. Neurology 37, 179.
    1. Strath S. J., Swartz A. M., Bassett D. R., O'Brien W. L., King G. A., Ainsworth B. E. (2000). Evaluation of heart rate as a method for assessing moderate intensity physical activity. Med. Sci. Sports Exerc. 32, S465–S47010.1097/00005768-200009001-00005
    1. Swain R. A., Harris A. B., Wiener E. C., Dutka M. V., Morris H. D., Theien B. E., Konda S., Engberg K., Lauterbur P. C., Greenough W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117, 1037–104610.1016/S0306-4522(02)00664-4
    1. Thomas C., Moya L., Avidan G., Humphreys K., Jung K. J., Peterson M. A., Behrmann M. (2008). Reduction in white matter connectivity, revealed by diffusion tensor imaging, may account for age-related changes in face perception. J. Cogn. Neurosci. 20, 268–28410.1162/jocn.2008.20025
    1. van Buuren M., Gladwin T., Zandbelt B., van den Heuvel M., Ramsey N., Kahn R., Vink M. (2009). Cardiorespiratory effects on default-mode network activity as measured with fMRI. Hum. Brain Mapp. 30, 3031–304210.1002/hbm.20729
    1. van Gelder B. M., Tijhuis M. A. R., Kalmijn S., Giampaoli S., Kromhout D. (2007). Decline in cognitive functioning is associated with a higher mortality risk. Neuroepidemiology 28, 93–10010.1159/000098552
    1. Van Praag H., Christie B. R., Sejnowski T. J., Gage F. H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–1343110.1073/pnas.96.23.13427
    1. Van Praag H., Kempermann G., Gage F. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 2, 266–27010.1038/6368
    1. Van Praag H., Shubert T., Zhao C., Gage F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–868510.1523/JNEUROSCI.1731-05.2005
    1. Vaynman S., Ying Z., Gomez-Pinilla F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–259010.1111/j.1460-9568.2004.03720.x
    1. Vickers A. J. (2005). Analysis of variance is easily misapplied in the analysis of randomized trials: a critique and discussion of alternative statistical approaches. Psychosom. Med. 67, 652–65510.1097/01.psy.0000172624.52957.a8
    1. Vickers A. J., Altman D. G. (2001). Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 323, 1123–1124
    1. Voss M. W., Erickson K. I., Chaddock L., Prakash R. S., Colcombe S. J., Morris K. S., Doerksen S., Hu L., McAuley E., Kramer A. F. (2008). Dedifferentiation in the visual cortex: an fMRI investigation of individual differences in older adults. Brain Res. 1244, 121–13110.1016/j.brainres.2008.09.051
    1. Voss M. W., Erickson K. I., Prakash R. S., Chaddock L., Malkowski E., Alves H., Kim J. S., Morris K. S., White S. M., Wójcicki T. R., Hu L., Szabo A., Klamm E., McAuley E., Kramer A. F. (2010). Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia 48, 1394–140610.1016/j.neuropsychologia.2010.01.005
    1. Whaley M. H., Brubaker P. H., Otto R. M. (2006). ACSM's Guidelines for Exercise Testing and Prescription, 7th Edn.New York, NY, Lippincott Williams & Wilkins
    1. Wise R. G., Ide K., Poulin M. J., Tracey I. (2004). Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage 21, 1652–166410.1016/j.neuroimage.2003.11.025
    1. Worsley K. J., Evans A. C., Marrett S., Neelen P. (1992). A three dimensional statistical analysis for cbf activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918
    1. Yaffe K., Fiocco A. J., Lindquist K., Vittinghoff E., Simonsick E. M., Newman A. B., Satterfield S., Rosano C., Rubin S. M., Ayonayon H. N., Harris T. B., Study H. A. (2009). Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology 72, 2029–203510.1212/WNL.0b013e3181a92c36
    1. Zar J. H. (1996). Biostatistical Analysis, 3rd Edn.Upper Saddle River, NJ: Prentice-Hall

Source: PubMed

3
Subscribe