Hemodynamics in Shock Patients Assessed by Critical Care Ultrasound and Its Relationship to Outcome: A Prospective Study

Tongjuan Zou, Wanhong Yin, Yi Li, Lijing Deng, Ran Zhou, Xiaoting Wang, Yangong Chao, Lina Zhang, Yan Kang, Chinese Critical Ultrasound Study Group (CCUSG), Tongjuan Zou, Wanhong Yin, Yi Li, Lijing Deng, Ran Zhou, Xiaoting Wang, Yangong Chao, Lina Zhang, Yan Kang, Chinese Critical Ultrasound Study Group (CCUSG)

Abstract

Background: Shock is one of the causes of mortality in the intensive care unit (ICU). Traditionally, hemodynamics related to shock have been monitored by broad-spectrum devices with treatment guided by many inaccurate variables to describe the pathophysiological changes. Critical care ultrasound (CCUS) has been widely advocated as a preferred tool to monitor shock patients. The purpose of this study was to analyze and broaden current knowledge of the characteristics of ultrasonic hemodynamic pattern and investigate their relationship to outcome.

Methods: This prospective study of shock patients in CCUS was conducted in 181 adult patients between April 2016 and June 2017 in the Department of Intensive Care Unit of West China Hospital. CCUS was performed within the initial 6 hours after shock patients were enrolled. The demographic and clinical characteristics, ultrasonic pattern of hemodynamics, and outcome were recorded. A stepwise bivariate logistic regression model was established to identify the correlation between ultrasonic variables and the 28-day mortality.

Results: A total of 181 patients with shock were included in our study (male/female: 113/68). The mean age was 58.2 ± 18.0 years; the mean Acute Physiology and Chronic Health Evaluation II (APACHE II score) was 23.7 ± 8.7, and the 28-day mortality was 44.8% (81/181). The details of ultrasonic pattern were well represented, and the multivariate analysis revealed that mitral annular plane systolic excursion (MAPSE), mitral annular peak systolic velocity (S'-MV), tricuspid annular plane systolic excursion (TAPSE), and lung ultrasound score (LUSS) were the independent risk factors for 28-day mortality in our study, as well as APACHE II score, PaO2/FiO2, and lactate (p = 0.047, 0.041, 0.022, 0.002, 0.027, 0.028, and 0.01, respectively).

Conclusions: CCUS exam on admission provided valuable information to describe the pathophysiological changes of shock patients and the mechanism of shock. Several critical variables obtained by CCUS were related to outcome, hence deserving more attention in clinical decision-making. Trial Registration. The study was approved by the Ethics Committee of West China Hospital Review Board for human research with the following reference number 201736 and was registered on ClinicalTrials. This trial is registered with NCT03082326 on 3 March 2017 (retrospectively registered).

Conflict of interest statement

The authors declare that they have no competing interests.

Copyright © 2020 Tongjuan Zou et al.

Figures

Figure 1
Figure 1
Five standard views used in critical care ultrasonography (CCUS). Subxiphoid long-axis (SLAX) view (a), subxiphoid inferior vena cava (SIVC) view (b), parasternal long-axis (PLAX) view (c), parasternal short-axis (PSAX) view (d), and apical four-chamber (A4CH) view (e).
Figure 2
Figure 2
Eight-zone lung ultrasound examination protocol and lung ultrasound pattern. (a) Each hemithorax is separated into four quadrants: anterior, lateral zones (separated by the anterior axillary lines) each divided into upper and lower portions. AAL indicates anterior axillary line. (b) Lung ultrasound pattern: (A) A pattern; (B) B1 pattern; (C) B2 pattern; (D) C pattern (lung consolidation) [52].
Figure 3
Figure 3
Completion rate and findings of cardiac structure and pericardial effusion in shock patients. Abbreviations: LV: left ventricle; RV: right ventricle; IVS: interventricular septum.
Figure 4
Figure 4
Completion rate and findings of cardiac function, volume status, and lung ultrasound on shock patients. Abbreviations: LV: left ventricle; RV: right ventricle; LA: left atrium.
Figure 5
Figure 5
Completion rate and findings of lung ultrasound examination on shock patients.

References

    1. Vincent J. L., De Backer D. Circulatory shock. The New England Journal of Medicine. 2013;369(18):1726–1734. doi: 10.1056/NEJMra1208943.
    1. Rhodes A., Evans L. E., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6.
    1. Rivers E., Nguyen B., Havstad S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England Journal of Medicine. 2001;345(19):1368–1377. doi: 10.1056/NEJMoa010307.
    1. Cecconi M., de Backer D., Antonelli M., et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Medicine. 2014;40(12):1795–1815. doi: 10.1007/s00134-014-3525-z.
    1. Vincent J. L., Rhodes A., Perel A., et al. Clinical review: update on hemodynamic monitoring - a consensus of 16. Critical Care. 2011;15(4):p. 229. doi: 10.1186/cc10291.
    1. Shah M. R., Hasselblad V., Stevenson L. W., et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. Jama the Journal of the American Medical Association. 2005;294(13):p. 1664.
    1. Litton E., Morgan M. The PiCCO monitor: a review. Anaesthesia & Intensive Care. 2019;40(3):p. 393.
    1. Gassanov N., Caglayan E., Nia A., Erdmann E. Hämodynamisches monitoring auf der intensivstation: pulmonalarterienkatheter versus PiCCO. Deutsche Medizinische Wochenschrift. 2011;136(8):376–380. doi: 10.1055/s-0031-1272539.
    1. Moran D. E., Gibney R. G. Point-of-care ultrasonography. New England Journal of Medicine. 2011;104(9):p. 749.
    1. Beaulieu Y. Bedside echocardiography in the assessment of the critically ill. Critical Care Medicine. 2007;35(5 Suppl):235–249.
    1. Volpicelli G., Elbarbary M., Blaivas M., et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Medicine. 2012;38(4):577–591. doi: 10.1007/s00134-012-2513-4.
    1. Frankel H. L., Kirkpatrick A. W., Elbarbary M., et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part I: general ultrasonography. Critical Care Medicine. 2015;43(11):2479–2502. doi: 10.1097/CCM.0000000000001216.
    1. Salem R., Vallee F., Rusca M., Mebazaa A. Hemodynamic monitoring by echocardiography in the ICU: the role of the new echo techniques. Current Opinion in Critical Care. 2008;14(5):561–568. doi: 10.1097/MCC.0b013e32830e6d81.
    1. De B. D. Ultrasonic evaluation of the heart. Current Opinion in Critical Care. 2014;20(3):p. 309.
    1. Koster G., van der Horst I. C. C. Critical care ultrasonography in circulatory shock. Current Opinion in Critical Care. 2017;23(4):326–333. doi: 10.1097/MCC.0000000000000428.
    1. McLean A. S. Echocardiography in shock management. Critical Care. 2016;20(1):p. 275. doi: 10.1186/s13054-016-1401-7.
    1. Mok K. L. Make it SIMPLE: enhanced shock management by focused cardiac ultrasound. Journal of Intensive Care. 2016;4(1, article 51) doi: 10.1186/s40560-016-0176-x.
    1. Lichtenstein D. FALLS-protocol: lung ultrasound in hemodynamic assessment of shock. Heart Lung & Vessels. 2013;5(3):142–147.
    1. Liteplo A., Noble V., Atkinson P. My patient has no blood pressure: point-of-care ultrasound in the hypotensive patient: FAST and RELIABLE. Ultrasound. 2012;20(1):64–68. doi: 10.1258/ult.2011.011044.
    1. Perera P., Mailhot T., Riley D., Mandavia D. The RUSH exam: Rapid Ultrasound in SHock in the evaluation of the critically lll. Emergency Medicine Clinics of North America. 2010;28(1):29–56. doi: 10.1016/j.emc.2009.09.010.
    1. Manno E., Navarra M., Faccio L., et al. Deep impact of ultrasound in the intensive care unit: the “ICU-sound” protocol. Anesthesiology. 2012;117(4):801–809. doi: 10.1097/ALN.0b013e318264c621.
    1. Volpicelli G. Point-of-care multiorgan ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensive Care Medicine. 2013;39(7):1290–1298. doi: 10.1007/s00134-013-2919-7.
    1. Bailey B. A., Davis S., Witherspoon B. Assessment of volume status using ultrasonography. The Nursing Clinics of North America. 2017;52(2):269–279. doi: 10.1016/j.cnur.2017.01.004.
    1. Yin W., Yi L., Zeng X., et al. The utilization of critical care ultrasound to assess hemodynamics and lung pathology on ICU admission and the potential for predicting outcome. PLoS One. 2017;12(8, article e0182881) doi: 10.1371/journal.pone.0182881.
    1. Wang X., Liu D., He H., et al. Using critical care chest ultrasonic examination in emergency consultation: a pilot study. Ultrasound in Medicine & Biology. 2015;41(2):401–406. doi: 10.1016/j.ultrasmedbio.2014.09.010.
    1. Lichtenstein D. A., Mezière G. A. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117–125. doi: 10.1378/chest.07-2800.
    1. Krishnan S., Schmidt G. A. Acute right ventricular dysfunction. Chest. 2015;147(3):835–846. doi: 10.1378/chest.14-1335.
    1. Lai W. W., Gauvreau K., Rivera E. S., Saleeb S., Powell A. J., Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. International Journal of Cardiovascular Imaging. 2008;24(7):691–698. doi: 10.1007/s10554-008-9314-4.
    1. Lang R. M., Badano L. P., Mor-Avi V., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging. 2015;16(3):233–271. doi: 10.1093/ehjci/jev014.
    1. Yeboah J., Bluemke D. A., Hundley W. G., Rodriguez C. J., Lima J. A., Herrington D. M. Left ventricular dilation and incident congestive heart failure in asymptomatic adults without cardiovascular disease: multi-ethnic study of atherosclerosis (MESA) Journal of Cardiac Failure. 2014;20(12):905–911. doi: 10.1016/j.cardfail.2014.09.002.
    1. Cosyns B., Plein S., Nihoyanopoulos P., et al. European Association of Cardiovascular Imaging (EACVI) position paper: multimodality imaging in pericardial disease. European Heart Journal Cardiovascular Imaging. 2015;16(1):12–31. doi: 10.1093/ehjci/jeu128.
    1. Chandraratna P. A., Mohar D. S., Sidarous P. F. Role of echocardiography in the treatment of cardiac tamponade. Echocardiography. 2014;31(7):899–910. doi: 10.1111/echo.12605.
    1. Wann S. L., Passen E. Echocardiography in pericardial disease. Journal of the American Society of Echocardiography. 2008;21(1):7–13. doi: 10.1016/j.echo.2007.11.003.
    1. Zhang Z., Xu X., Ye S., Xu L. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound in Medicine & Biology. 2014;40(5):845–853. doi: 10.1016/j.ultrasmedbio.2013.12.010.
    1. Dipti A., Soucy Z., Surana A., Chandra S. Role of inferior vena cava diameter in assessment of volume status: a meta-analysis. American Journal of Emergency Medicine. 2012;30(8):1414–1419.e1. doi: 10.1016/j.ajem.2011.10.017.
    1. Blehar D. J., Resop D., Chin B., Dayno M., Gaspari R. Inferior vena cava displacement during respirophasic ultrasound imaging. Critical Ultrasound Journal. 2012;4(1):1–5.
    1. Levitov A., Frankel H. L., Blaivas M., et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part II: cardiac ultrasonography. Critical Care Medicine. 2016;44(6):1206–1227. doi: 10.1097/CCM.0000000000001847.
    1. Barbier C., Loubières Y., Schmit C., et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Medicine. 2004;30(9):1740–1746. doi: 10.1007/s00134-004-2259-8.
    1. Kjærgaard J. Assessment of right ventricular systolic function by tissue Doppler echocardiography. Danish Medical Journal. 2012;59(3):p. B4409.
    1. Nishimura R. A., Otto C. M., Bonow R. O., et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2014;63(22):212–231.
    1. Rudski L. G., Lai W. W., Afilalo J., et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography. 2010;23(7):685–713. quiz 786-688.
    1. Pinto F. J. Echocardiography in left ventricular dysfunction. Italian Heart Journal Official Journal of the Italian Federation of Cardiology. 2004;5(Supplement 6):p. 41S.
    1. Melamed R., Sprenkle M. D., Ulstad V. K., Herzog C. A., Leatherman J. W. Assessment of left ventricular function by intensivists using hand-held echocardiography. Chest. 2009;135(6):1416–1420. doi: 10.1378/chest.08-2440.
    1. Cameli M., Mondillo S., Solari M., et al. Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Failure Reviews. 2016;21(1):1–18.
    1. Nagueh S. F., Smiseth O. A., Appleton C. P., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging. 2016;17(12):1321–1360. doi: 10.1093/ehjci/jew082.
    1. Nagueh S. F., Appleton C. P., Gillebert T. C., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. European Journal of Echocardiography the Journal of the Working Group on Echocardiography of the European Society of Cardiology. 2009;10(2):p. 165.
    1. Vignon P. Ventricular diastolic abnormalities in the critically ill. Current Opinion in Critical Care. 2013;19(3):242–249. doi: 10.1097/MCC.0b013e32836091c3.
    1. Soummer A., Perbet S., Brisson H., et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Critical Care Medicine. 2012;40(7):2064–2072. doi: 10.1097/CCM.0b013e31824e68ae.
    1. Jambrik Z., Gargani L., Adamicza A., et al. B-lines quantify the lung water content: a lung ultrasound versus lung gravimetry study in acute lung injury. Ultrasound in Medicine & Biology. 2010;36(12):2004–2010.
    1. Caltabeloti F. P., Monsel A., Arbelot C., et al. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study. Critical Care. 2014;18(3, article R91) doi: 10.1186/cc13859.
    1. Lichtenstein D. Lung ultrasound in the critically ill. Current Opinion in Critical Care. 2014;20(3):315–322. doi: 10.1097/MCC.0000000000000096.
    1. Yin W., Zou T., Qin Y., et al. Poor lung ultrasound score in shock patients admitted to the ICU is associated with worse outcome. BMC Pulmonary Medicine. 2019;19(1):p. 1. doi: 10.1186/s12890-018-0755-9.
    1. Hahn R. T., Abraham T., Adams M. S., et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Journal of the American Society of Echocardiography. 2013;26(9):921–964. doi: 10.1016/j.echo.2013.07.009.
    1. Reeves S. T., Finley A. C., Skubas N. J., et al. Basic perioperative transesophageal echocardiography examination. Anesthesia & Analgesia. 2013;117(3):543–558. doi: 10.1213/ANE.0b013e3182a00616.
    1. Picano E., Frassi F., Agricola E., Gligorova S., Gargani L., Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. Journal of the American Society of Echocardiography Official Publication of the American Society of Echocardiography. 2006;19(3):356–363. doi: 10.1016/j.echo.2005.05.019.
    1. Zou T., Yin W., Diddams M., Kang Y., Chinese Critical Ultrasound Study Group The global and regional lung ultrasound score can accurately evaluate the severity of lung disease in critically ill patients. Journal of Ultrasound in Medicine. 2020;39(9):1879–1880. doi: 10.1002/jum.15278.

Source: PubMed

3
Subscribe