Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation

Chiara Rizzo, Giulia Grasso, Giulia Maria Destro Castaniti, Francesco Ciccia, Giuliana Guggino, Chiara Rizzo, Giulia Grasso, Giulia Maria Destro Castaniti, Francesco Ciccia, Giuliana Guggino

Abstract

Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players. A better knowledge of such processes could determine the detection of new therapeutic targets that are a major need for pSS.

Keywords: IFN signature; Sjogren syndrome; cytokines; inflammation; innate immunity; innate lymphoid cells.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The interplay between innate immune cells and the inflammation prone microenvironment in Primary Sjogren Syndrome (pSS). pSS is a multifactorial rheumatic disease: environmental stimuli, in genetic susceptible subjects, may trigger Salivary gland epithelial cells (SGECs) to express ligands, receptors and cytokines, such as IL-22, that act in a paracrine and autocrine way when determining the activation of several innate immune cells like NKs, ILC3s, DCs and macrophages. SGECs exhibit a subverted architecture mainly characterized by altered tight junctions. The pro-inflammatory milieu, boosted by a huge production of cytokines and chemokines, promotes the recruitment of more innate immune cells and finally drives the formation of GC-like structures, which are responsible for the in situ autoantibodies release. The aberrant production of VEGF determines chaotic neoangiogenesis; activated endothelial cells express ICAM-1 that mediates immune innate cells tissue infiltration. Mast cells contribute to fibrosis and fatty infiltration of salivary glands. MAIT cells display a dysfunctional activation with a consequent impaired production of protective cytokines. The overall immune response appears to be Th17 polarized, suggesting a pivotal role for this cytokine in pSS. APC: Antigen presenting cell; BAFF: B-cell activating factor; DC: Dendritic cell; GC: Germinal center; ICs: Immunecomplexes; ICAM-1: Intercellular adhesion molecule 1; IL-22R: IL-22 receptor; ILC3: Type 3 innate lymphoid cell; MAIT: Mucosa-associated invariant T cell; SGECs: Salivary gland epithelial cells; VEGF: Vascular endothelial growth factor.

References

    1. Mariette X., Criswell L.A. Primary Sjögren’s Syndrome. N. Engl. J. Med. 2018;378:931–939. doi: 10.1056/NEJMcp1702514.
    1. Johnsen S.J., Brun J.G., Goransson L.G., Smastuen M.C., Johannesen T.B., Haldorsen K., Harboe E., Jonsson R., Meyer P.A., Omdal R. Risk of non-Hodgkin’s lymphoma in primary Sjogren’s syndrome: A population-based study. Arthritis Care Res. 2013;65:816–821. doi: 10.1002/acr.21887.
    1. Patel R., Shahane A. The epidemiology of Sjogren’s syndrome. Clin. Epidemiol. 2014;6:247–255. doi: 10.2147/clep.S47399.
    1. Voulgarelis M., Tzioufas A.G. Pathogenetic mechanisms in the initiation and perpetuation of Sjogren’s syndrome. Nat. Rev. Rheumatol. 2010;6:529–537. doi: 10.1038/nrrheum.2010.118.
    1. Kiripolsky J., McCabe L.G., Kramer J.M. Innate immunity in Sjogren’s syndrome. Clin. Immunol. 2017;182:4–13. doi: 10.1016/j.clim.2017.04.003.
    1. Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006.
    1. Low H.Z., Witte T. Aspects of innate immunity in Sjogren’s syndrome. Arthritis Res. 2011;13:218. doi: 10.1186/ar3318.
    1. Bombardieri M., Pitzalis C. Ectopic lymphoid neogenesis and lymphoid chemokines in Sjogren’s syndrome: At the interplay between chronic inflammation, autoimmunity and lymphomagenesis. Curr. Pharm. Biotechnol. 2012;13:1989–1996. doi: 10.2174/138920112802273209.
    1. Hillen M.R., Pandit A., Blokland S.L.M., Hartgring S.A.Y., Bekker C.P.J., van der Heijden E.H.M., Servaas N.H., Rossato M., Kruize A.A., van Roon J.A.G., et al. Plasmacytoid DCs From Patients With Sjogren’s Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front. Immunol. 2019;10:2096. doi: 10.3389/fimmu.2019.02096.
    1. Ozaki Y., Ito T., Son Y., Amuro H., Shimamoto K., Sugimoto H., Katashiba Y., Ogata M., Miyamoto R., Murakami N., et al. Decrease of blood dendritic cells and increase of tissue-infiltrating dendritic cells are involved in the induction of Sjogren’s syndrome but not in the maintenance. Clin. Exp. Immunol. 2010;159:315–326. doi: 10.1111/j.1365-2249.2009.04071.x.
    1. Ainola M., Porola P., Takakubo Y., Przybyla B., Kouri V.P., Tolvanen T.A., Hanninen A., Nordstrom D.C. Activation of plasmacytoid dendritic cells by apoptotic particles—Mechanism for the loss of immunological tolerance in Sjogren’s syndrome. Clin. Exp. Immunol. 2018;191:301–310. doi: 10.1111/cei.13077.
    1. Swiecki M., Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 2010;234:142–162. doi: 10.1111/j.0105-2896.2009.00881.x.
    1. Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 2015;15:471–485. doi: 10.1038/nri3865.
    1. Bave U., Nordmark G., Lovgren T., Ronnelid J., Cajander S., Eloranta M.L., Alm G.V., Ronnblom L. Activation of the type I interferon system in primary Sjogren’s syndrome: A possible etiopathogenic mechanism. Arthritis Rheum. 2005;52:1185–1195. doi: 10.1002/art.20998.
    1. Vakaloglou K.M., Mavragani C.P. Activation of the type I interferon pathway in primary Sjogren’s syndrome: An update. Curr. Opin. Rheumatol. 2011;23:459–464. doi: 10.1097/BOR.0b013e328349fd30.
    1. El Shikh M.E., Pitzalis C. Follicular dendritic cells in health and disease. Front. Immunol. 2012;3:292. doi: 10.3389/fimmu.2012.00292.
    1. Aloisi F., Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 2006;6:205–217. doi: 10.1038/nri1786.
    1. Lambert N.C. Nonendocrine mechanisms of sex bias in rheumatic diseases. Nat. Rev. Rheumatol. 2019;15:673–686. doi: 10.1038/s41584-019-0307-6.
    1. Stout R.D., Jiang C., Matta B., Tietzel I., Watkins S.K., Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 2005;175:342–349. doi: 10.4049/jimmunol.175.1.342.
    1. Christodoulou M.I., Kapsogeorgou E.K., Moutsopoulos H.M. Characteristics of the minor salivary gland infiltrates in Sjogren’s syndrome. J. Autoimmun. 2010;34:400–407. doi: 10.1016/j.jaut.2009.10.004.
    1. Kinoshita S., Nakamura T., Nishida K. Pathological keratinization of ocular surface epithelium. Adv. Exp. Med. Biol. 2002;506:641–646. doi: 10.1007/978-1-4615-0717-8_90.
    1. McNamara N.A. Molecular mechanisms of keratinizing ocular surface disease. Optom. Vis. Sci. 2010;87:233–238. doi: 10.1097/OPX.0b013e3181c914ed.
    1. Li J., Yu Y.F., Liu C.H., Wang C.M. Significance of M2 macrophage in tubulointerstitial disease secondary to primary Sjogren’s disease. Ren. Fail. 2018;40:634–639. doi: 10.1080/0886022X.2018.1518242.
    1. Skopouli F.N., Li L., Boumba D., Stefanaki S., Hanel K., Moutsopoulos H.M., Krilis S.A. Association of mast cells with fibrosis and fatty infiltration in the minor salivary glands of patients with Sjogren’s syndrome. Clin. Exp. Rheumatol. 1998;16:63–65.
    1. Perez P., Goicovich E., Alliende C., Aguilera S., Leyton C., Molina C., Pinto R., Romo R., Martinez B., Gonzalez M.J. Differential expression of matrix metalloproteinases in labial salivary glands of patients with primary Sjogren’s syndrome. Arthritis Rheum. 2000;43:2807–2817. doi: 10.1002/1529-0131(200012)43:12<2807::AID-ANR22>;2-M.
    1. Dinescu S.C., ForTofoiu M.C., Bumbea A.M., Ciurea P.L., Busuioc C.J., Musetescu A.E. Histopathological and immunohistochemical profile in primary Sjogren’s syndrome. Rom. J. Morphol. Embryol. 2017;58:409–417.
    1. Barrera M.J., Bahamondes V., Sepulveda D., Quest A.F., Castro I., Cortes J., Aguilera S., Urzua U., Molina C., Perez P., et al. Sjogren’s syndrome and the epithelial target: A comprehensive review. J. Autoimmun. 2013;42:7–18. doi: 10.1016/j.jaut.2013.02.001.
    1. Van Itallie C.M., Anderson J.M. Architecture of tight junctions and principles of molecular composition. Semin. Cell Dev. Biol. 2014;36:157–165. doi: 10.1016/j.semcdb.2014.08.011.
    1. Baker O.J., Camden J.M., Redman R.S., Jones J.E., Seye C.I., Erb L., Weisman G.A. Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line. Am. J. Physiol. Cell Physiol. 2008;295:C1191–C1201. doi: 10.1152/ajpcell.00144.2008.
    1. Ewert P., Aguilera S., Alliende C., Kwon Y.J., Albornoz A., Molina C., Urzua U., Quest A.F., Olea N., Perez P., et al. Disruption of tight junction structure in salivary glands from Sjogren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 2010;62:1280–1289. doi: 10.1002/art.27362.
    1. Fox R.I. The salivary gland epithelial cell in Sjogren’s Syndrome: What are the steps involved in wounding or killing their secretory function? J. Rheumatol. 2012;39:1117–1119. doi: 10.3899/jrheum.120278.
    1. Manoussakis M.N., Kapsogeorgou E.K. The role of epithelial cells in the pathogenesis of Sjogren’s syndrome. Clin. Rev. Allergy Immunol. 2007;32:225–230. doi: 10.1007/s12016-007-8007-4.
    1. Gong Y.Z., Nititham J., Taylor K., Miceli-Richard C., Sordet C., Wachsmann D., Bahram S., Georgel P., Criswell L.A., Sibilia J., et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjogren’s syndrome. J. Autoimmun. 2014;51:57–66. doi: 10.1016/j.jaut.2013.11.003.
    1. Manoussakis M.N., Kapsogeorgou E.K. The role of intrinsic epithelial activation in the pathogenesis of Sjogren’s syndrome. J. Autoimmun. 2010;35:219–224. doi: 10.1016/j.jaut.2010.06.011.
    1. Mitsias D.I., Kapsogeorgou E.K., Moutsopoulos H.M. The role of epithelial cells in the initiation and perpetuation of autoimmune lesions: Lessons from Sjogren’s syndrome (autoimmune epithelitis) Lupus. 2006;15:255–261. doi: 10.1191/0961203306lu2290rr.
    1. Katsiougiannis S., Tenta R., Skopouli F.N. Autoimmune epithelitis (Sjogren’s syndrome); the impact of metabolic status of glandular epithelial cells on auto-immunogenicity. J. Autoimmun. 2019;104:102335. doi: 10.1016/j.jaut.2019.102335.
    1. Moustaka K., Katsiougiannis S., Tenta R., Havaki S., Koutsoudaki P., Moutsopoulos H.M., Skopouli F. THU0223 Chronic adrenergic stimulation of minor salivary glands of patientswith primary sjögren’s drives er stress and activation of the unfolded protein response. Ann. Rheum. Dis. 2019;78:389. doi: 10.1136/annrheumdis-2019-eular.1438.
    1. B’Chir W., Maurin A.C., Carraro V., Averous J., Jousse C., Muranishi Y., Parry L., Stepien G., Fafournoux P., Bruhat A. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–7699. doi: 10.1093/nar/gkt563.
    1. Deegan S., Saveljeva S., Gorman A.M., Samali A. Stress-induced self-cannibalism: On the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci. CMLS. 2013;70:2425–2441. doi: 10.1007/s00018-012-1173-4.
    1. Senft D., Ronai Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 2015;40:141–148. doi: 10.1016/j.tibs.2015.01.002.
    1. Katsiougiannis S., Tenta R., Skopouli F.N. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjogren’s syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells. Clin. Exp. Immunol. 2015;181:244–252. doi: 10.1111/cei.12638.
    1. Obeid M., Tesniere A., Ghiringhelli F., Fimia G.M., Apetoh L., Perfettini J.L., Castedo M., Mignot G., Panaretakis T., Casares N., et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007;13:54–61. doi: 10.1038/nm1523.
    1. Mavragani C.P., Crow M.K. Activation of the type I interferon pathway in primary Sjogren’s syndrome. J. Autoimmun. 2010;35:225–231. doi: 10.1016/j.jaut.2010.06.012.
    1. Crow M.K. Long interspersed nuclear elements (LINE-1): Potential triggers of systemic autoimmune disease. Autoimmunity. 2010;43:7–16. doi: 10.3109/08916930903374865.
    1. Kalogirou E.-M., Piperi E.P., Tosios K.I., Tsiambas E., Fanourakis G., Sklavounou A. Ductal cells of minor salivary glands in Sjögren’s syndrome express LINE-1 ORF2p and APOBEC3B. J. Oral. Pathol. Med. 2018;47:179–185. doi: 10.1111/jop.12656.
    1. Rodic N., Sharma R., Sharma R., Zampella J., Dai L., Taylor M.S., Hruban R.H., Iacobuzio-Donahue C.A., Maitra A., Torbenson M.S., et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 2014;184:1280–1286. doi: 10.1016/j.ajpath.2014.01.007.
    1. Carbone A., Gloghini A., Ferlito A. Pathological features of lymphoid proliferations of the salivary glands: Lymphoepithelial sialadenitis versus low-grade B-cell lymphoma of the malt type. Ann. Otol. Rhinol. Laryngol. 2000;109:1170–1175. doi: 10.1177/000348940010901217.
    1. Rischmueller M., Tieu J., Lester S. Primary Sjogren’s syndrome. Best Pract. Res. Clin. Rheumatol. 2016;30:189–220. doi: 10.1016/j.berh.2016.04.003.
    1. Bartoloni E., Alunno A., Bistoni O., Caterbi S., Luccioli F., Santoboni G., Mirabelli G., Cannarile F., Gerli R. Characterization of circulating endothelial microparticles and endothelial progenitor cells in primary Sjogren’s syndrome: New markers of chronic endothelial damage? Rheumatology. 2015;54:536–544. doi: 10.1093/rheumatology/keu320.
    1. Mikulowska-Mennis A., Xu B., Berberian J.M., Michie S.A. Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin/l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am. J. Pathol. 2001;159:671–681. doi: 10.1016/S0002-9440(10)61738-5.
    1. Turkcapar N., Sak S.D., Saatci M., Duman M., Olmez U. Vasculitis and expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-selectin in salivary glands of patients with Sjogren’s syndrome. J. Rheumatol. 2005;32:1063–1070.
    1. Nagy J.A., Benjamin L., Zeng H., Dvorak A.M., Dvorak H.F. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–119. doi: 10.1007/s10456-008-9099-z.
    1. Nayar S., Campos J., Chung M.M., Navarro-Nunez L., Chachlani M., Steinthal N., Gardner D.H., Rankin P., Cloake T., Caamano J.H., et al. Bimodal Expansion of the Lymphatic Vessels Is Regulated by the Sequential Expression of IL-7 and Lymphotoxin alpha1beta2 in Newly Formed Tertiary Lymphoid Structures. J. Immunol. 2016;197:1957–1967. doi: 10.4049/jimmunol.1500686.
    1. Margulies D.H. The in-betweeners: MAIT cells join the innate-like lymphocytes gang. J. Exp. Med. 2014;211:1501–1502. doi: 10.1084/jem.2118insight3.
    1. Huang S., Gilfillan S., Kim S., Thompson B., Wang X., Sant A.J., Fremont D.H., Lantz O., Hansen T.H. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J. Exp. Med. 2008;205:1201–1211. doi: 10.1084/jem.20072579.
    1. Huang S., Martin E., Kim S., Yu L., Soudais C., Fremont D.H., Lantz O., Hansen T.H. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc. Natl. Acad. Sci. USA. 2009;106:8290–8295. doi: 10.1073/pnas.0903196106.
    1. Matsui Y., Shapiro H.M., Sheehy M.J., Christenson L., Staunton D.E., Eynon E.E., Yunis E.J. Differential expression of T cell differentiation antigens and major histocompatibility antigens on activated T cells during the cell cycle. Eur. J. Immunol. 1986;16:248–251. doi: 10.1002/eji.1830160307.
    1. Miles J.J., McCluskey J., Rossjohn J., Gras S. Understanding the complexity and malleability of T-cell recognition. Immunol. Cell Biol. 2015;93:433–441. doi: 10.1038/icb.2014.112.
    1. Rossjohn J., Gras S., Miles J.J., Turner S.J., Godfrey D.I., McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 2015;33:169–200. doi: 10.1146/annurev-immunol-032414-112334.
    1. Grimaldi D., Le Bourhis L., Sauneuf B., Dechartres A., Rousseau C., Ouaaz F., Milder M., Louis D., Chiche J.D., Mira J.P., et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 2014;40:192–201. doi: 10.1007/s00134-013-3163-x.
    1. Ussher J.E., Bilton M., Attwod E., Shadwell J., Richardson R., de Lara C., Mettke E., Kurioka A., Hansen T.H., Klenerman P., et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 2014;44:195–203. doi: 10.1002/eji.201343509.
    1. Wang J., Macardle C., Weedon H., Beroukas D., Banovic T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjögren’s syndrome patients. Eur. J. Immunol. 2016;46:2444–2453. doi: 10.1002/eji.201646300.
    1. Fernandez C.S., Amarasena T., Kelleher A.D., Rossjohn J., McCluskey J., Godfrey D.I., Kent S.J. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol. Cell Biol. 2015;93:177–188. doi: 10.1038/icb.2014.91.
    1. Reantragoon R., Corbett A.J., Sakala I.G., Gherardin N.A., Furness J.B., Chen Z., Eckle S.B., Uldrich A.P., Birkinshaw R.W., Patel O., et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 2013;210:2305–2320. doi: 10.1084/jem.20130958.
    1. Rusakiewicz S., Nocturne G., Lazure T., Semeraro M., Flament C., Caillat-Zucman S., Sene D., Delahaye N., Vivier E., Chaba K., et al. NCR3/NKp30 contributes to pathogenesis in primary Sjogren’s syndrome. Sci. Transl. Med. 2013;5:195ra196. doi: 10.1126/scitranslmed.3005727.
    1. Izumi Y., Ida H., Huang M., Iwanaga N., Tanaka F., Aratake K., Arima K., Tamai M., Kamachi M., Nakamura H., et al. Characterization of peripheral natural killer cells in primary Sjogren’s syndrome: Impaired NK cell activity and low NK cell number. J. Lab. Clin. Med. 2006;147:242–249. doi: 10.1016/j.lab.2006.01.001.
    1. Rizzo C., La Barbera L., Lo Pizzo M., Ciccia F., Sireci G., Guggino G. Invariant NKT Cells and Rheumatic Disease: Focus on Primary Sjogren Syndrome. Int. J. Mol. Sci. 2019;20:5435. doi: 10.3390/ijms20215435.
    1. Godfrey D.I., MacDonald H.R., Kronenberg M., Smyth M.J., Van Kaer L. NKT cells: What’s in a name? Nat. Rev. Immunol. 2004;4:231–237. doi: 10.1038/nri1309.
    1. Godfrey D.I., Kronenberg M. Going both ways: Immune regulation via CD1d-dependent NKT cells. J. Clin. Investig. 2004;114:1379–1388. doi: 10.1172/JCI200423594.
    1. Yang J.Q., Wen X., Kim P.J., Singh R.R. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. J. Immunol. 2011;186:1512–1520. doi: 10.4049/jimmunol.1002373.
    1. Sudzius G., Mieliauskaite D., Siaurys A., Viliene R., Butrimiene I., Characiejus D., Dumalakiene I. Distribution of Peripheral Lymphocyte Populations in Primary Sjogren’s Syndrome Patients. J. Immunol. Res. 2015;2015:854706. doi: 10.1155/2015/854706.
    1. van der Vliet H.J., von Blomberg B.M., Nishi N., Reijm M., Voskuyl A.E., van Bodegraven A.A., Polman C.H., Rustemeyer T., Lips P., van den Eertwegh A.J., et al. Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 2001;100:144–148. doi: 10.1006/clim.2001.5060.
    1. Guggino G., Ciccia F., Raimondo S., Giardina G., Alessandro R., Dieli F., Sireci G., Triolo G. Invariant NKT cells are expanded in peripheral blood but are undetectable in salivary glands of patients with primary Sjogren’s syndrome. Clin. Exp. Rheumatol. 2016;34:25–31.
    1. Ahn Y.O., Blazar B.R., Miller J.S., Verneris M.R. Lineage relationships of human interleukin-22-producing CD56+ RORgammat+ innate lymphoid cells and conventional natural killer cells. Blood. 2013;121:2234–2243. doi: 10.1182/blood-2012-07-440099.
    1. Ciccia F., Guggino G., Rizzo A., Ferrante A., Raimondo S., Giardina A., Dieli F., Campisi G., Alessandro R., Triolo G. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjogren’s syndrome. Ann. Rheum. Dis. 2012;71:295–301. doi: 10.1136/ard.2011.154013.
    1. Mjosberg J., Eidsmo L. Update on innate lymphoid cells in atopic and non-atopic inflammation in the airways and skin. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2014;44:1033–1043. doi: 10.1111/cea.12353.
    1. Shikhagaie M.M., Germar K., Bal S.M., Ros X.R., Spits H. Innate lymphoid cells in autoimmunity: Emerging regulators in rheumatic diseases. Nat. Rev. Rheumatol. 2017;13:164–173. doi: 10.1038/nrrheum.2016.218.
    1. Zook E.C., Kee B.L. Development of innate lymphoid cells. Nat. Immunol. 2016;17:775–782. doi: 10.1038/ni.3481.
    1. Drake L.Y., Iijima K., Kita H. Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 2014;69:1300–1307. doi: 10.1111/all.12446.
    1. Ebbo M., Crinier A., Vely F., Vivier E. Innate lymphoid cells: Major players in inflammatory diseases. Nat. Rev. Immunol. 2017;17:665–678. doi: 10.1038/nri.2017.86.
    1. Bernink J.H., Krabbendam L., Germar K., de Jong E., Gronke K., Kofoed-Nielsen M., Munneke J.M., Hazenberg M.D., Villaudy J., Buskens C.J., et al. Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity. 2015;43:146–160. doi: 10.1016/j.immuni.2015.06.019.
    1. Ohne Y., Silver J.S., Thompson-Snipes L., Collet M.A., Blanck J.P., Cantarel B.L., Copenhaver A.M., Humbles A.A., Liu Y.J. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 2016;17:646–655. doi: 10.1038/ni.3447.
    1. Klose C.S., Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 2016;17:765–774. doi: 10.1038/ni.3489.
    1. Qiu J., Guo X., Chen Z.M., He L., Sonnenberg G.F., Artis D., Fu Y.X., Zhou L. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39:386–399. doi: 10.1016/j.immuni.2013.08.002.
    1. Bal S.M., Bernink J.H., Nagasawa M., Groot J., Shikhagaie M.M., Golebski K., van Drunen C.M., Lutter R., Jonkers R.E., Hombrink P., et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 2016;17:636–645. doi: 10.1038/ni.3444.
    1. Rodriguez-Carrio J., Hahnlein J.S., Ramwadhdoebe T.H., Semmelink J.F., Choi I.Y., van Lienden K.P., Maas M., Gerlag D.M., Tak P.P., Geijtenbeek T.B., et al. Brief Report: Altered Innate Lymphoid Cell Subsets in Human Lymph Node Biopsy Specimens Obtained During the At-Risk and Earliest Phases of Rheumatoid Arthritis. Arthritis Rheumatol. 2017;69:70–76. doi: 10.1002/art.39811.
    1. Leijten E.F., van Kempen T.S., Boes M., Michels-van Amelsfort J.M., Hijnen D., Hartgring S.A., van Roon J.A., Wenink M.H., Radstake T.R. Brief report: Enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol. 2015;67:2673–2678. doi: 10.1002/art.39261.
    1. Ciccia F., Accardo-Palumbo A., Alessandro R., Rizzo A., Principe S., Peralta S., Raiata F., Giardina A., De Leo G., Triolo G. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheumatol. 2012;64:1869–1878. doi: 10.1002/art.34355.
    1. Ciccia F., Guggino G., Rizzo A., Saieva L., Peralta S., Giardina A., Cannizzaro A., Sireci G., De Leo G., Alessandro R., et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheumatol. Dis. 2015;74:1739–1747. doi: 10.1136/annrheumdis-2014-206323.
    1. Brito-Zeron P., Baldini C., Bootsma H., Bowman S.J., Jonsson R., Mariette X., Sivils K., Theander E., Tzioufas A., Ramos-Casals M. Sjogren syndrome. Nat. Rev. Dis. Primers. 2016;2:16047. doi: 10.1038/nrdp.2016.47.
    1. Pan H.F., Li X.P., Zheng S.G., Ye D.Q. Emerging role of interleukin-22 in autoimmune diseases. Cytokine Growth Factor Rev. 2013;24:51–57. doi: 10.1016/j.cytogfr.2012.07.002.
    1. Cella M., Fuchs A., Vermi W., Facchetti F., Otero K., Lennerz J.K., Doherty J.M., Mills J.C., Colonna M. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–725. doi: 10.1038/nature07537.
    1. Hoorweg K., Peters C.P., Cornelissen F., Aparicio-Domingo P., Papazian N., Kazemier G., Mjosberg J.M., Spits H., Cupedo T. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells. Front. Immunol. 2012;3:72. doi: 10.3389/fimmu.2012.00072.
    1. Glatzer T., Killig M., Meisig J., Ommert I., Luetke-Eversloh M., Babic M., Paclik D., Bluthgen N., Seidl R., Seifarth C., et al. RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity. 2013;38:1223–1235. doi: 10.1016/j.immuni.2013.05.013.
    1. Parodi M., Favoreel H., Candiano G., Gaggero S., Sivori S., Mingari M.C., Moretta L., Vitale M., Cantoni C. NKp44-NKp44 Ligand Interactions in the Regulation of Natural Killer Cells and Other Innate Lymphoid Cells in Humans. Front. Immunol. 2019;10:719. doi: 10.3389/fimmu.2019.00719.
    1. Lavoie T.N., Stewart C.M., Berg K.M., Li Y., Nguyen C.Q. Expression of interleukin-22 in Sjogren’s syndrome: Significant correlation with disease parameters. Scand. J. Immunol. 2011;74:377–382. doi: 10.1111/j.1365-3083.2011.02583.x.
    1. Sonnenberg G.F., Nair M.G., Kirn T.J., Zaph C., Fouser L.A., Artis D. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med. 2010;207:1293–1305. doi: 10.1084/jem.20092054.
    1. Savan R., McFarland A.P., Reynolds D.A., Feigenbaum L., Ramakrishnan K., Karwan M., Shirota H., Klinman D.M., Dunleavy K., Pittaluga S., et al. A novel role for IL-22R1 as a driver of inflammation. Blood. 2011;117:575–584. doi: 10.1182/blood-2010-05-285908.
    1. Huber S., Gagliani N., Zenewicz L.A., Huber F.J., Bosurgi L., Hu B., Hedl M., Zhang W., O’Connor W., Jr., Murphy A.J., et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 2012;491:259–263. doi: 10.1038/nature11535.
    1. Ciccia F., Guggino G., Rizzo A., Bombardieri M., Raimondo S., Carubbi F., Cannizzaro A., Sireci G., Dieli F., Campisi G., et al. Interleukin (IL)-22 receptor 1 is over-expressed in primary Sjogren’s syndrome and Sjogren-associated non-Hodgkin lymphomas and is regulated by IL-18. Clin. Exp. Immunol. 2015;181:219–229. doi: 10.1111/cei.12643.
    1. Cella M., Miller H., Song C. Beyond NK cells: The expanding universe of innate lymphoid cells. Front. Immunol. 2014;5:282. doi: 10.3389/fimmu.2014.00282.
    1. Groom J., Kalled S.L., Cutler A.H., Olson C., Woodcock S.A., Schneider P., Tschopp J., Cachero T.G., Batten M., Wheway J., et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J. Clin. Investig. 2002;109:59–68. doi: 10.1172/JCI0214121.
    1. Bar-Ephraim Y.E., Cornelissen F., Papazian N., Konijn T., Hoogenboezem R.M., Sanders M.A., Westerman B.A., Gonultas M., Kwekkeboom J., Den Haan J.M.M., et al. Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation. Cell Rep. 2017;21:823–833. doi: 10.1016/j.celrep.2017.09.070.
    1. Wenink M.H., Leijten E.F.A., Cupedo T., Radstake T. Review: Innate Lymphoid Cells: Sparking Inflammatory Rheumatic Disease? Arthritis Rheumatol. 2017;69:885–897. doi: 10.1002/art.40068.
    1. Bodewes I.L.A., Bjork A., Versnel M.A., Wahren-Herlenius M. Innate immunity and interferons in the pathogenesis of Sjogren’s syndrome. Rheumatology. 2019 doi: 10.1093/rheumatology/key360.
    1. Davies R., Sarkar I., Hammenfors D., Bergum B., Vogelsang P., Solberg S.M., Gavasso S., Brun J.G., Jonsson R., Appel S. Single Cell Based Phosphorylation Profiling Identifies Alterations in Toll-Like Receptor 7 and 9 Signaling in Patients With Primary Sjogren’s Syndrome. Front. Immunol. 2019;10:281. doi: 10.3389/fimmu.2019.00281.
    1. Schoenborn J.R., Wilson C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 2007;96:41–101. doi: 10.1016/s0065-2776(07)96002-2.
    1. Bodewes I.L.A., Al-Ali S., van Helden-Meeuwsen C.G., Maria N.I., Tarn J., Lendrem D.W., Schreurs M.W.J., Steenwijk E.C., van Daele P.L.A., Both T., et al. Systemic interferon type I and type II signatures in primary Sjogren’s syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921–930. doi: 10.1093/rheumatology/kex490.
    1. Donnelly R.P., Kotenko S.V. Interferon-lambda: A new addition to an old family. J. Interferon Cytokine Res. 2010;30:555–564. doi: 10.1089/jir.2010.0078.
    1. Ronnblom L. The importance of the type I interferon system in autoimmunity. Clin. Exp. Rheumatol. 2016;34:21–24.
    1. Fitzgerald-Bocarsly P., Dai J., Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008;19:3–19. doi: 10.1016/j.cytogfr.2007.10.006.
    1. Maria N.I., Steenwijk E.C., AS I.J., van Helden-Meeuwsen C.G., Vogelsang P., Beumer W., Brkic Z., van Daele P.L., van Hagen P.M., van der Spek P.J., et al. Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjogren’s syndrome. Ann. Rheum. Dis. 2017;76:721–730. doi: 10.1136/annrheumdis-2016-209589.
    1. Barizzone N., Monti S., Mellone S., Godi M., Marchini M., Scorza R., Danieli M.G., D’Alfonso S. Rare Variants in the TREX1 Gene and Susceptibility to Autoimmune Diseases. Biomed. Res. Int. 2013;2013:471703. doi: 10.1155/2013/471703.
    1. Vlachogiannis N.I., Nezos A., Tzioufas A.G., Koutsilieris M., Moutsopoulos H.M., Mavragani C.P. Increased frequency of the PTPN22W* variant in primary Sjogren’s Syndrome: Association with low type I IFN scores. Clin. Immunol. 2016;173:157–160. doi: 10.1016/j.clim.2016.10.015.
    1. Piccinini A.M., Midwood K.S. DAMPening inflammation by modulating TLR signalling. Mediat. Inflamm. 2010;2010:672395. doi: 10.1155/2010/672395.
    1. Liu J., Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol. Immunol. 2016;13:711–721. doi: 10.1038/cmi.2016.58.
    1. Akira S., Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004;4:499–511. doi: 10.1038/nri1391.
    1. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015.
    1. Spachidou M.P., Bourazopoulou E., Maratheftis C.I., Kapsogeorgou E.K., Moutsopoulos H.M., Tzioufas A.G., Manoussakis M.N. Expression of functional Toll-like receptors by salivary gland epithelial cells: Increased mRNA expression in cells derived from patients with primary Sjogren’s syndrome. Clin. Exp. Immunol. 2007;147:497–503. doi: 10.1111/j.1365-2249.2006.03311.x.
    1. Kiripolsky J., McCabe L.G., Gaile D.P., Kramer J.M. Myd88 is required for disease development in a primary Sjogren’s syndrome mouse model. J. Leukoc. Biol. 2017;102:1411–1420. doi: 10.1189/jlb.3A0717-311R.
    1. Shimizu T., Nakamura H., Takatani A., Umeda M., Horai Y., Kurushima S., Michitsuji T., Nakashima Y., Kawakami A. Activation of Toll-like receptor 7 signaling in labial salivary glands of primary Sjogren’s syndrome patients. Clin. Exp. Immunol. 2019;196:39–51. doi: 10.1111/cei.13242.
    1. Zheng L., Zhang Z., Yu C., Yang C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjogren’s syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010;109:844–850. doi: 10.1016/j.tripleo.2010.01.006.
    1. Shimizu S., Kurashige Y., Nishimura M., Mami Y., Sato J., Saitoh M., Selimović D., Abiko Y. Involvement of toll-like receptors in autoimmune sialoadenitis of the non-obese diabetic mouse. J. Oral Pathol. Med. 2012;41:517–523. doi: 10.1111/j.1600-0714.2012.01136.x.
    1. Kwok S.K., Cho M.L., Her Y.M., Oh H.J., Park M.K., Lee S.Y., Woo Y.J., Ju J.H., Park K.S., Kim H.Y., et al. TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren’s syndrome. Arthritis Res. 2012;14:R64. doi: 10.1186/ar3780.
    1. Ittah M., Miceli-Richard C., Gottenberg J.E., Sellam J., Eid P., Lebon P., Pallier C., Lepajolec C., Mariette X. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur. J. Immunol. 2008;38:1058–1064. doi: 10.1002/eji.200738013.
    1. Bombardieri M., Barone F., Pittoni V., Alessandri C., Conigliaro P., Blades M.C., Priori R., McInnes I.B., Valesini G., Pitzalis C. Increased circulating levels and salivary gland expression of interleukin-18 in patients with Sjogren’s syndrome: Relationship with autoantibody production and lymphoid organization of the periductal inflammatory infiltrate. Arthritis Res. 2004;6:R447–R456. doi: 10.1186/ar1209.
    1. Kiefer K., Oropallo M.A., Cancro M.P., Marshak-Rothstein A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 2012;90:498–504. doi: 10.1038/icb.2012.10.
    1. Charras A., Arvaniti P., Le Dantec C., Dalekos G.N., Zachou K., Bordron A., Renaudineau Y. JAK Inhibitors and Oxidative Stress Control. Front. Immunol. 2019;10:2814. doi: 10.3389/fimmu.2019.02814.
    1. Baldini C., Rossi C., Ferro F., Santini E., Seccia V., Donati V., Solini A. The P2X7 receptor-inflammasome complex has a role in modulating the inflammatory response in primary Sjogren’s syndrome. J. Intern. Med. 2013;274:480–489. doi: 10.1111/joim.12115.
    1. Broz P., Dixit V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016;16:407–420. doi: 10.1038/nri.2016.58.
    1. Mariathasan S., Newton K., Monack D.M., Vucic D., French D.M., Lee W.P., Roose-Girma M., Erickson S., Dixit V.M. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430:213–218. doi: 10.1038/nature02664.
    1. Winsor N., Krustev C., Bruce J., Philpott D.J., Girardin S.E. Canonical and noncanonical inflammasomes in intestinal epithelial cells. Cell. Microbiol. 2019;21:e13079. doi: 10.1111/cmi.13079.
    1. Woods L.T., Camden J.M., Batek J.M., Petris M.J., Erb L., Weisman G.A. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am. J. Physiol. Cell Physiol. 2012;303:C790–C801. doi: 10.1152/ajpcell.00072.2012.
    1. Imgenberg-Kreuz J., Sandling J.K., Nordmark G. Epigenetic alterations in primary Sjogren’s syndrome—An overview. Clin. Immunol. 2018;196:12–20. doi: 10.1016/j.clim.2018.04.004.
    1. Lessard C.J., Li H., Adrianto I., Ice J.A., Rasmussen A., Grundahl K.M., Kelly J.A., Dozmorov M.G., Miceli-Richard C., Bowman S., et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren’s syndrome. Nat. Genet. 2013;45:1284–1292. doi: 10.1038/ng.2792.
    1. Holoch D., Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 2015;16:71–84. doi: 10.1038/nrg3863.
    1. Wu G.C., Pan H.F., Leng R.X., Wang D.G., Li X.P., Li X.M., Ye D.Q. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun. Rev. 2015;14:798–805. doi: 10.1016/j.autrev.2015.05.004.
    1. Zilahi E., Tarr T., Papp G., Griger Z., Sipka S., Zeher M. Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjogren’s syndrome. Immunol. Lett. 2012;141:165–168. doi: 10.1016/j.imlet.2011.09.006.
    1. Shi H., Zheng L.-y., Zhang P., Yu C.-q. miR-146a and miR-155 expression in PBMCs from patients with Sjögren’s syndrome. J. Oral Pathol. Med. 2014;43:792–797. doi: 10.1111/jop.12187.
    1. Gourzi V.C., Kapsogeorgou E.K., Kyriakidis N.C., Tzioufas A.G. Study of microRNAs (miRNAs) that are predicted to target the autoantigens Ro/SSA and La/SSB in primary Sjögren’s Syndrome. Clin. Exp. Immunol. 2015;182:14–22. doi: 10.1111/cei.12664.
    1. Shi H., Cao N., Pu Y., Xie L., Zheng L., Yu C. Long non-coding RNA expression profile in minor salivary gland of primary Sjögren’s syndrome. Arthritis Res. Ther. 2016;18:109. doi: 10.1186/s13075-016-1005-2.
    1. Kalunian K.C., Merrill J.T., Maciuca R., McBride J.M., Townsend M.J., Wei X., Davis J.C., Jr., Kennedy W.P. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE) Ann. Rheum. Dis. 2016;75:196–202. doi: 10.1136/annrheumdis-2014-206090.
    1. Khamashta M., Merrill J.T., Werth V.P., Furie R., Kalunian K., Illei G.G., Drappa J., Wang L., Greth W. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: A randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2016;75:1909–1916. doi: 10.1136/annrheumdis-2015-208562.
    1. Furie R., Khamashta M., Merrill J.T., Werth V.P., Kalunian K., Brohawn P., Illei G.G., Drappa J., Wang L., Yoo S. Anifrolumab, an Anti-Interferon-alpha Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017;69:376–386. doi: 10.1002/art.39962.
    1. Burge D.J., Eisenman J., Byrnes-Blake K., Smolak P., Lau K., Cohen S.B., Kivitz A.J., Levin R., Martin R.W., Sherrer Y., et al. Safety, pharmacokinetics, and pharmacodynamics of RSLV-132, an RNase-Fc fusion protein in systemic lupus erythematosus: A randomized, double-blind, placebo-controlled study. Lupus. 2017;26:825–834. doi: 10.1177/0961203316678675.
    1. Lood C., Allhorn M., Lood R., Gullstrand B., Olin A.I., Ronnblom L., Truedsson L., Collin M., Bengtsson A.A. IgG glycan hydrolysis by endoglycosidase S diminishes the proinflammatory properties of immune complexes from patients with systemic lupus erythematosus: A possible new treatment? Arthritis Rheum. 2012;64:2698–2706. doi: 10.1002/art.34454.
    1. Guiducci C., Ghirelli C., Marloie-Provost M.A., Matray T., Coffman R.L., Liu Y.J., Barrat F.J., Soumelis V. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J. Exp. Med. 2008;205:315–322. doi: 10.1084/jem.20070763.
    1. Wu Y.W., Tang W., Zuo J.P. Toll-like receptors: Potential targets for lupus treatment. Acta Pharm. Sin. 2015;36:1395–1407. doi: 10.1038/aps.2015.91.
    1. Muskardin T.L.W., Niewold T.B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 2018;14:214–228. doi: 10.1038/nrrheum.2018.31.
    1. Sanchez G.A.M., Reinhardt A., Ramsey S., Wittkowski H., Hashkes P.J., Berkun Y., Schalm S., Murias S., Dare J.A., Brown D., et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Investig. 2018;128:3041–3052. doi: 10.1172/JCI98814.
    1. Retamozo S., Flores-Chavez A., Consuegra-Fernandez M., Lozano F., Ramos-Casals M., Brito-Zeron P. Cytokines as therapeutic targets in primary Sjogren syndrome. Pharmacol. Ther. 2018;184:81–97. doi: 10.1016/j.pharmthera.2017.10.019.
    1. Zhang L.W., Zhou P.R., Wei P., Cong X., Wu L.L., Hua H. Expression of interleukin-17 in primary Sjogren’s syndrome and the correlation with disease severity: A systematic review and meta-analysis. Scand. J. Immunol. 2018;87:e12649. doi: 10.1111/sji.12649.
    1. Devauchelle-Pensec V., Mariette X., Jousse-Joulin S., Berthelot J.M., Perdriger A., Puechal X., Le Guern V., Sibilia J., Gottenberg J.E., Chiche L., et al. Treatment of primary Sjogren syndrome with rituximab: A randomized trial. Ann. Intern. Med. 2014;160:233–242. doi: 10.7326/M13-1085.
    1. Kuznik A., Bencina M., Svajger U., Jeras M., Rozman B., Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 2011;186:4794–4804. doi: 10.4049/jimmunol.1000702.
    1. Yoon C.H., Lee H.J., Lee E.Y., Lee E.B., Lee W.-W., Kim M.K., Wee W.R. Effect of Hydroxychloroquine Treatment on Dry Eyes in Subjects with Primary Sjögren’s Syndrome: A Double-Blind Randomized Control Study. J. Korean Med. Sci. 2016;31:1127–1135. doi: 10.3346/jkms.2016.31.7.1127.

Source: PubMed

3
Subscribe