Invariant NKT Cells and Rheumatic Disease: Focus on Primary Sjogren Syndrome

Chiara Rizzo, Lidia La Barbera, Marianna Lo Pizzo, Francesco Ciccia, Guido Sireci, Giuliana Guggino, Chiara Rizzo, Lidia La Barbera, Marianna Lo Pizzo, Francesco Ciccia, Guido Sireci, Giuliana Guggino

Abstract

Primary Sjogren syndrome (pSS) is a complex autoimmune disease mainly affecting salivary and lacrimal glands. Several factors contribute to pSS pathogenesis; in particular, innate immunity seems to play a key role in disease etiology. Invariant natural killer (NK) T cells (iNKT) are a T-cell subset able to recognize glycolipid antigens. Their function remains unclear, but studies have pointed out their ability to modulate the immune system through the promotion of specific cytokine milieu. In this review, we discussed the possible role of iNKT in pSS development, as well as their implications as future markers of disease activity.

Keywords: Sjogren syndrome; autoimmunity; cytokines; iNKT; innate immunity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
iNKT cells in Sjogren Syndrome. (a) in peripheral blood iNKT express low levels of chemokine receptors (CXCR3, CCR6, CCR5) on their surface. This could explain their reduced presence in salivary glands due to impaired migration. iNKT from pSS peripheral blood samples stimulated with a-GalCer produce both IL-17 and IFN-γ; (b) in the salivary gland, reduction or absence of iNKT cells determines the loss of their role as negative regulators on autoreactive B cells and the consequent in situ production of autoantibodies.

References

    1. Mariette X., Criswell L.A. Primary Sjögren’s syndrome. N. Engl. J. Med. 2018;378:931–939. doi: 10.1056/NEJMcp1702514.
    1. Rischmueller M., Tieu J., Lester S. Primary Sjögren’s syndrome. Best Pract. Res. Clin. Rheumatol. 2016;30:189–220. doi: 10.1016/j.berh.2016.04.003.
    1. Johnsen S.J., Brun J.G., Gøransson L.G., Småstuen M.C., Johannesen T.B., Haldorsen K., Harboe E., Jonsson R., Meyer P.A., Omdal R.J. Risk of non-Hodgkin’s lymphoma in primary Sjögren’s syndrome: A population-based study. Arthritis Care Res. 2013;65:816–821. doi: 10.1002/acr.21887.
    1. Garcia-Carrasco M., Ramos-Casals M., Rosas J., Pallares L., Calvo-Alen J., Cervera R., Font J., Ingelmo M.J.M. Primary Sjögren syndrome: Clinical and immunologic disease patterns in a cohort of 400 patients. Medicine. 2002;81:270–280. doi: 10.1097/00005792-200207000-00003.
    1. Tobon G.J., Saraux A., Gottenberg J.E., Quartuccio L., Fabris M., Seror R., Devauchelle-Pensec V., Morel J., Rist S., Mariette X., et al. Role of Fms-like tyrosine kinase 3 ligand as a potential biologic marker of lymphoma in primary Sjogren’s syndrome. Arthritis Rheum. 2013;65:3218–3227. doi: 10.1002/art.38129.
    1. Kapsogeorgou E.K., Papageorgiou A., Protogerou A.D., Voulgarelis M., Tzioufas A.G. Low miR200b-5p levels in minor salivary glands: A novel molecular marker predicting lymphoma development in patients with Sjogren’s syndrome. Ann. Rheum. Dis. 2018;77:1200–1207. doi: 10.1136/annrheumdis-2017-212639.
    1. Patel R., Shahane A. The epidemiology of Sjogren’s syndrome. Clin. Epidemiol. 2014;6:247–255.
    1. Voulgarelis M., Tzioufas A.G. Pathogenetic mechanisms in the initiation and perpetuation of Sjogren’s syndrome. Nat. Rev. Rheum. 2010;6:529–537. doi: 10.1038/nrrheum.2010.118.
    1. Bunya V.Y., Ying G.S., Maguire M.G., Kuklinski E., Lin M.C., Peskin E., Asbell P.A. Prevalence of novel candidate sjogren syndrome autoantibodies in the dry eye assessment and management (DREAM) study. Cornea. 2018;37:1425–1430. doi: 10.1097/ICO.0000000000001714.
    1. Birnbaum J., Hoke A., Lalji A., Calabresi P., Bhargava P., Casciola-Rosen L. Brief report: Anti-Calponin 3 autoantibodies: A newly identified specificity in patients with Sjogren’s syndrome. Arthritis Rheum. 2018;70:1610–1616. doi: 10.1002/art.40550.
    1. Chen W., Cao H., Lin J., Olsen N., Zheng S.G. Biomarkers for primary Sjogren’s syndrome. Genom. Proteom. Bioinf. 2015;13:219–223. doi: 10.1016/j.gpb.2015.06.002.
    1. Maria N.I., Brkic Z., Waris M., van Helden-Meeuwsen C.G., Heezen K., van de Merwe J.P., van Daele P.L., Dalm V.A., Drexhage H.A., Versnel M.A. MxA as a clinically applicable biomarker for identifying systemic interferon type I in primary Sjogren’s syndrome. Ann. Rheum. Dis. 2014;73:1052–1059. doi: 10.1136/annrheumdis-2012-202552.
    1. Hjelmervik T.O., Petersen K., Jonassen I., Jonsson R., Bolstad A.I. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjogren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52:1534–1544. doi: 10.1002/art.21006.
    1. Nocturne G., Seror R., Fogel O., Belkhir R., Boudaoud S., Saraux A., Larroche C., Le Guern V., Gottenberg J.E., Mariette X. CXCL13 and CCL11 serum levels and lymphoma and disease activity in primary Sjogren’s syndrome. Arthritis Rheumatol. 2015;67:3226–3233. doi: 10.1002/art.39315.
    1. Versura P., Giannaccare G., Vukatana G., Mule R., Malavolta N., Campos E.C. Predictive role of tear protein expression in the early diagnosis of Sjogren’s syndrome. Ann. Clin. Biochem. 2018;55:561–570. doi: 10.1177/0004563217750679.
    1. Jazzar A.A., Shirlaw P.J., Carpenter G.H., Challacombe S.J., Proctor G.B. Salivary S100A8/A9 in Sjogren’s syndrome accompanied by lymphoma. J. Oral Pathol. Med. 2018;47:900–906. doi: 10.1111/jop.12763.
    1. Baldini C., Zabotti A., Filipovic N., Vukicevic A., Luciano N., Ferro F., Lorenzon M., De Vita S. Imaging in primary Sjogren’s syndrome: The ‘obsolete and the new’. Clin. Exp. Rheumatol. 2018;36:215–221.
    1. Kiripolsky J., McCabe L.G., Kramer J.M. Innate immunity in Sjogren’s syndrome. Clin. Immunol. 2017;182:4–13. doi: 10.1016/j.clim.2017.04.003.
    1. Bendelac A., Savage P.B., Teyton L. The biology of NKT cells. Annu. Rev. Immunol. 2007;25:297–336. doi: 10.1146/annurev.immunol.25.022106.141711.
    1. Drennan M.B., Aspeslagh S., Elewaut D. Invariant natural killer T cells in rheumatic disease: A joint dilemma. Nat. Rev. Rheumatol. 2010;6:90. doi: 10.1038/nrrheum.2009.261.
    1. Bendelac A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 1995;182:2091–2096. doi: 10.1084/jem.182.6.2091.
    1. Godfrey D.I., MacDonald H.R., Kronenberg M., Smyth M.J., Van Kaer L. NKT cells: What’s in a name? Nat. Rev. Immunol. 2004;4:231–237. doi: 10.1038/nri1309.
    1. Matsuda J.L., Naidenko O.V., Gapin L., Nakayama T., Taniguchi M., Wang C.R., Koezuka Y., Kronenberg M. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 2000;192:741–754. doi: 10.1084/jem.192.5.741.
    1. Kojo S., Adachi Y., Keino H., Taniguchi M., Sumida T.J.A. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 2001;44:1127–1138. doi: 10.1002/1529-0131(200105)44:5<1127::AID-ANR194>;2-W.
    1. Moody D.B., Reinhold B.B., Guy M.R., Beckman E.M., Frederique D.E., Furlong S.T., Ye S., Reinhold V.N., Sieling P.A., Modlin R.L.J.S. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science. 1997;278:283–286. doi: 10.1126/science.278.5336.283.
    1. Godfrey D.I., Kronenberg M.J.T. Going both ways: Immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 2004;114:1379–1388. doi: 10.1172/JCI200423594.
    1. Kronenberg M., Gapin L.J. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2002;2:557. doi: 10.1038/nri854.
    1. Yang J.Q., Wen X., Kim P.J., Singh R.R. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. J. Immunol. 2011;186:1512–1520. doi: 10.4049/jimmunol.1002373.
    1. Wu D., Xing G.W., Poles M.A., Horowitz A., Kinjo Y., Sullivan B., Bodmer-Narkevitch V., Plettenburg O., Kronenberg M., Tsuji M., et al. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. USA. 2005;102:1351–1356. doi: 10.1073/pnas.0408696102.
    1. Brigl M., Bry L., Kent S.C., Gumperz J.E., Brenner M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 2003;4:1230–1237. doi: 10.1038/ni1002.
    1. Mattner J., Debord K.L., Ismail N., Goff R.D., Cantu C., 3rd, Zhou D., Saint-Mezard P., Wang V., Gao Y., Yin N., et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature. 2005;434:525–529. doi: 10.1038/nature03408.
    1. Selmi C., Balkwill D.L., Invernizzi P., Ansari A.A., Coppel R.L., Podda M., Leung P.S., Kenny T.P., Van De Water J., Nantz M.H., et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology. 2003;38:1250–1257. doi: 10.1053/jhep.2003.50446.
    1. Torina A., Guggino G., La Manna M., Sireci G.J.I. The janus face of NKT cell function in autoimmunity and infectious diseases. Int. J. Mol. Sci. 2018;19:440. doi: 10.3390/ijms19020440.
    1. Ambrosi A., Wahren-Herlenius M.J. Update on the immunobiology of Sjögren’s syndrome. Curr. Opin. Rheumatol. 2015;27:468–475. doi: 10.1097/BOR.0000000000000195.
    1. Green M.R., Kennell A.S., Larche M.J., Seifert M.H., Isenberg D.A., Salaman M.R. Natural killer T cells in families of patients with systemic lupus erythematosus: Their possible role in regulation of IGG production. Arthritis Rheum. 2007;56:303–310. doi: 10.1002/art.22326.
    1. Yang J.-Q., Singh A.K., Wilson M.T., Satoh M., Stanic A.K., Park J.-J., Hong S., Gadola S.D., Mizutani A., Kakumanu S.R. Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J. Immunol. 2003;171:2142–2153. doi: 10.4049/jimmunol.171.4.2142.
    1. Chan O.T., Paliwal V., McNiff J.M., Park S.-H., Bendelac A., Shlomchik M.J. Deficiency in β2-microglobulin, but not CD1, accelerates spontaneous lupus skin disease while inhibiting nephritis in MRL-Faslpr mice: An example of disease regulation at the organ level. J. Immunol. 2001;167:2985–2990. doi: 10.4049/jimmunol.167.5.2985.
    1. Zeng D., Liu Y., Sidobre S., Kronenberg M., Strober S. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J. Clin. Invest. 2003;112:1211–1222. doi: 10.1172/JCI200317165.
    1. Forestier C., Molano A., Im J.S., Dutronc Y., Diamond B., Davidson A., Illarionov P.A., Besra G.S., Porcelli S.A. Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black × New Zealand White) F1 mice. J. Immunol. 2005;175:763–770. doi: 10.4049/jimmunol.175.2.763.
    1. Tsukamoto K., Ohtsuji M., Shiroiwa W., Lin Q., Nakamura K., Tsurui H., Jiang Y., Sudo K., Nishimura H., Shirai T. Aberrant genetic control of invariant TCR-bearing NKT cell function in New Zealand mouse strains: Possible involvement in systemic lupus erythematosus pathogenesis. J. Immunol. 2008;180:4530–4539. doi: 10.4049/jimmunol.180.7.4530.
    1. Postól E., Meyer A., Cardillo F., De Alencar R., Pessina D., Nihei J., Mariano M., Mengel J. Long-term administration of IgG2a anti-NK1. 1 monoclonal antibody ameliorates lupus-like disease in NZB/W mice in spite of an early worsening induced by an IgG2a-dependent BAFF/BLyS production. Immunology. 2008;125:184–196.
    1. Singh A.K., Yang J.Q., Parekh V.V., Wei J., Wang C.R., Joyce S., Singh R.R., Van Kaer L. The natural killer T cell ligand α-galactosylceramide prevents or promotes pristane-induced lupus in mice. Eur. J. Immunol. 2005;35:1143–1154. doi: 10.1002/eji.200425861.
    1. Yang J.-Q., Kim P.J., Singh R.R. Brief treatment with iNKT cell ligand α-galactosylceramide confers a long-term protection against lupus. J. Clin. Immunol. 2012;32:106–113. doi: 10.1007/s10875-011-9590-y.
    1. Van Der Vliet H.J., Von Blomberg B.M.E., Nishi N., Reijm M., Voskuyl A.E., Van Bodegraven A.A., Polman C.H., Rustemeyer T., Lips P., Van Den Eertwegh A. Circulating Vα24+ Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 2001;100:144–148. doi: 10.1006/clim.2001.5060.
    1. Gutowska-Owsiak D., Birchall M.A., Moots R.J., Christmas S.E., Pazmany L. Proliferatory defect of invariant population and accumulation of non-invariant CD1d-restricted natural killer T cells in the joints of RA patients. Mod. Rheumatol. 2014;24:434–442. doi: 10.3109/14397595.2013.844309.
    1. Tang X., Zhang B., Jarrell J.A., Price J.V., Dai H., Utz P.J., Strober S. Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice. J. Autoimmun. 2014;50:87–98. doi: 10.1016/j.jaut.2014.01.002.
    1. Yoshiga Y., Goto D., Segawa S., Ohnishi Y., Matsumoto I., Ito S., Tsutsumi A., Taniguchi M., Sumida T. [Corrigendum] Invariant NKT cells produce IL-17 through IL-23-dependent and-independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int. J. Mol. Med. 2013;31:998.
    1. Chiba A., Oki S., Miyamoto K., Hashimoto H., Yamamura T., Miyake S.J.A. Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum. 2004;50:305–313. doi: 10.1002/art.11489.
    1. Takahashi T., Chiba S., Nieda M., Azuma T., Ishihara S., Shibata Y., Juji T., Hirai H. Cutting edge: Analysis of human Vα24+ CD8+ NK T cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol. 2002;168:3140–3144. doi: 10.4049/jimmunol.168.7.3140.
    1. Chiba A., Kaieda S., Oki S., Yamamura T., Miyake S. Rheumatism, The involvement of Vα14 natural killer T cells in the pathogenesis of arthritis in murine models. Arthritis Rheum. 2005;52:1941–1948. doi: 10.1002/art.21056.
    1. Kim H.Y., Kim S., Chung D.H. FcγRIII engagement provides activating signals to NKT cells in antibody-induced joint inflammation. J. Clin. Invest. 2006;116:2484–2492.
    1. Li X., Shiratsuchi T., Chen G., Dellabona P., Casorati G., Franck R.W., Tsuji M. Invariant TCR rather than CD1d shapes the preferential activities of C-glycoside analogues against human versus murine invariant NKT cells. J. Immunol. 2009;183:4415–4421. doi: 10.4049/jimmunol.0901021.
    1. Brossay L., Chioda M., Burdin N., Koezuka Y., Casorati G., Dellabona P., Kronenberg M. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 1998;188:1521–1528. doi: 10.1084/jem.188.8.1521.
    1. Grose R.H., Thompson F.M., Baxter A.G., Pellicci D.G., Cummins A.G. Deficiency of invariant NK T cells in Crohn’s disease and ulcerative colitis. Dig. Dis. Sci. 2007;52:1415–1422. doi: 10.1007/s10620-006-9261-7.
    1. Shibolet O., Kalish Y., Klein A., Alper R., Zolotarov L., Thalenfeld B., Engelhardt D., Rabbani E., Ilan Y. Adoptive transfer of ex vivo immune-programmed NKT lymphocytes alleviates immune-mediated colitis. J. Leukoc. Biol. 2004;75:76–86. doi: 10.1189/jlb.0703351.
    1. Ciccia F., Rizzo A., Triolo G. Subclinical gut inflammation in ankylosing spondylitis. Curr. Opin. Rheumatol. 2016;28:89–96. doi: 10.1097/BOR.0000000000000239.
    1. Rizzo A., Ferrante A., Guggino G., Ciccia F. Gut inflammation in spondyloarthritis. Best Pract Res. Clin. Rheumatol. 2017;31:863–876. doi: 10.1016/j.berh.2018.08.012.
    1. Jacques P., Venken K., Van Beneden K., Hammad H., Seeuws S., Drennan M.B., Deforce D., Verbruggen G., Apostolaki M., Kollias G., et al. Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum. 2010;62:988–999. doi: 10.1002/art.27324.
    1. Wingender G., Stepniak D., Krebs P., Lin L., McBride S., Wei B., Braun J., Mazmanian S.K., Kronenberg M. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology. 2012;143:418–428. doi: 10.1053/j.gastro.2012.04.017.
    1. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., Glickman J.N., Siebert R., Baron R.M., Kasper D.L., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–493. doi: 10.1126/science.1219328.
    1. Ferro F., Marcucci E., Orlandi M., Baldini C., Bartoloni-Bocci E. One year in review 2017: Primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2017;35:179–191.
    1. Riccieri V., Parisi G., Spadaro A., Scrivo R., Barone F., Moretti T., Bernardini G., Strom R., Taccari E., Valesini G. Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J. Rheumatol. 2005;32:283–286.
    1. Mekinian A., Mahevas T., Mohty M., Jachiet V., Riviere S., Fain O., Gaugler B. Mucosal-associated invariant cells are deficient in systemic sclerosis. Scand. J. Immunol. 2017;86:216–220. doi: 10.1111/sji.12585.
    1. Guggino G., Ciccia F., Raimondo S., Giardina G., Alessandro R., Dieli F., Sireci G., Triolo G. Invariant NKT cells are expanded in peripheral blood but are undetectable in salivary glands of patients with primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2016;34:25–31.
    1. Awada A., Nicaise C., Ena S., Schandéné L., Rasschaert J., Popescu I., Gangji V., Soyfoo M.S. Potential involvement of the IL-33–ST2 axis in the pathogenesis of primary Sjögren’s syndrome. Ann. Rheum. Dis. 2014;73:1259–1263. doi: 10.1136/annrheumdis-2012-203187.
    1. Wermeling F., Lind S.M., Jordö E.D., Cardell S.L., Karlsson M.C. Invariant NKT cells limit activation of autoreactive CD1d-positive B cells. J. Exp. Med. 2010;207:943–952. doi: 10.1084/jem.20091314.
    1. Szodoray P., Papp G., Horvath I.F., Barath S., Sipka S., Nakken B., Zeher M. Cells with regulatory function of the innate and adaptive immune system in primary Sjogren’s syndrome. Clin. Exp. Immunol. 2009;157:343–349. doi: 10.1111/j.1365-2249.2009.03966.x.
    1. Sudzius G., Mieliauskaite D., Siaurys A., Viliene R., Butrimiene I., Characiejus D., Dumalakiene I. Distribution of peripheral lymphocyte populations in primary Sjogren’s syndrome Patients. J. Immunol. Res. 2015;2015:854706. doi: 10.1155/2015/854706.
    1. Davies R., Hammenfors D., Bergum B., Jakobsen K., Solheim M., Vogelsang P., Brun J.G., Bryceson Y., Jonsson R., Appel S. Patients with primary Sjogren’s syndrome have alterations in absolute quantities of specific peripheral leucocyte populations. Scand. J. Immunol. 2017;86:491–502. doi: 10.1111/sji.12622.
    1. Jonsson R., Vogelsang P., Volchenkov R., Espinosa A., Wahren-Herlenius M., Appel S. The complexity of Sjogren’s syndrome: Novel aspects on pathogenesis. Immunol. Lett. 2011;141:1–9. doi: 10.1016/j.imlet.2011.06.007.
    1. Fogel L.A., Yokoyama W.M., French A.R. Natural killer cells in human autoimmune disorders. Arthritis Res. Ther. 2013;15:216. doi: 10.1186/ar4232.
    1. Ichikawa Y., Yoshida M., Takaya M., Uchiyama M., Shimizu H., Arimori S.J.A. Circulating natural killer cells in Sjögren’s syndrome. Arthritis Rheum. 1985;28:182–187. doi: 10.1002/art.1780280213.
    1. Coquet J.M., Chakravarti S., Kyparissoudis K., McNab F.W., Pitt L.A., McKenzie B.S., Berzins S.P., Smyth M.J., Godfrey D.I. Diverse cytokine production by NKT cell subsets and identification of an IL-17− producing CD4− NK1. 1− NKT cell population. Proc. Natl. Acad. Sci. USA. 2008;105:11287–11292. doi: 10.1073/pnas.0801631105.
    1. Tarazona R., DelaRosa O., Peralbo E., Casado J., Pena J., Solana R. Human NKT cells in health and disease. Inmunología. 2003;22:359–370.
    1. Sag D., Özkan M., Kronenberg M., Wingender G. Improved detection of cytokines produced by invariant NKT cells. Sci. Rep. 2017;7:16607. doi: 10.1038/s41598-017-16832-1.
    1. Van Kaer L., Wu L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front. Immunol. 2018;9:519. doi: 10.3389/fimmu.2018.00519.
    1. Miyake S., Yamamura T. Therapeutic potential of glycolipid ligands for natural killer (NK) T cells in the suppression of autoimmune diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2005;5:315–322. doi: 10.2174/1568008054863772.
    1. Mariette X., Seror R., Quartuccio L., Baron G., Salvin S., Fabris M., Desmoulins F., Nocturne G., Ravaud P., De Vita S. Efficacy and safety of belimumab in primary Sjögren’s syndrome: Results of the BELISS open-label phase II study. Ann. Rheum. Dis. 2015;74:526–531. doi: 10.1136/annrheumdis-2013-203991.
    1. Grigoriadou S., Chowdhury F., Pontarini E., Tappuni A., Bowman S.J., Bombardieri M. B cell depletion with rituximab in the treatment of primary Sjogren’s syndrome: What have we learnt? Clin. Exp. Rheumatol. 2019;37(Suppl. 118):217–224.
    1. Ciccia F., Giardina A., Rizzo A., Guggino G., Cipriani P., Carubbi F., Giacomelli R., Triolo G. Rituximab modulates the expression of IL-22 in the salivary glands of patients with primary Sjogren’s syndrome. Ann. Rheum. Dis. 2013;72:782–783. doi: 10.1136/annrheumdis-2012-202754.
    1. Fasano S., Isenberg D.A. Present and novel biologic drugs in primary Sjogren’s syndrome. Clin. Exp. Rheumatol. 2019;37(Suppl. 118):167–174.
    1. Kroese F.G.M., Haacke E.A., Bombardieri M. The role of salivary gland histopathology in primary Sjogren’s syndrome: Promises and pitfalls. Clin. Exp. Rheumatol. 2018;36:222–233.
    1. Porcelli S.A., Modlin R.L. The CD1 system: Antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 1999;17:297–329. doi: 10.1146/annurev.immunol.17.1.297.

Source: PubMed

3
Subscribe