Characterization of the Vaginal DNA Virome in Health and Dysbiosis

Rasmus Riemer Jakobsen, Thor Haahr, Peter Humaidan, Jørgen Skov Jensen, Witold Piotr Kot, Josue Leonardo Castro-Mejia, Ling Deng, Thomas Dyrmann Leser, Dennis Sandris Nielsen, Rasmus Riemer Jakobsen, Thor Haahr, Peter Humaidan, Jørgen Skov Jensen, Witold Piotr Kot, Josue Leonardo Castro-Mejia, Ling Deng, Thomas Dyrmann Leser, Dennis Sandris Nielsen

Abstract

Bacterial vaginosis (BV) is characterized by a reduction in Lactobacillus (L.) spp. abundance and increased abundance of facultative anaerobes, such as Gardnerella spp. BV aetiology is not fully understood; however, bacteriophages could play a pivotal role in the perturbation of the vaginal bacterial community. We investigated the vaginal viral community, including bacteriophages and the association to the bacterial community and BV-status. Vaginal samples from 48 patients undergoing IVF treatment for non-female factor infertility were subjected to metagenomic sequencing of purified virus-like particles. The vaginal viral community was characterized and correlated with the BV-status by Nugent score, bacterial community, structure, and the presence of key vaginal bacterial species. The majority of identified vaginal viruses belonged to the class of double-stranded DNA bacteriophages, with eukaryotic viruses constituting 4% of the total reads. Clear links between the viral community composition and BV (q = 0.006, R = 0.26) as well as the presence of L. crispatus (q = 0.001, R = 0.43), L. iners, Gardnerella spp., and Atopobium vaginae were found (q < 0.002, R > 0.15). The eukaryotic viral community also correlated with BV-status (q = 0.018, R = 0.20). In conclusion, the vaginal virome was clearly linked with bacterial community structure and BV-status.

Trial registration: ClinicalTrials.gov NCT02042352.

Keywords: bacterial vaginosis; bacteriophages; dysbiosis; vaginal microbiome; vaginal virome.

Conflict of interest statement

T.H. has received honoraria for lectures from Ferring, IBSA, Besins, and Merck. P.H. received unrestricted research grants from MSD, Merck, and Ferring as well as honoraria for lectures from MSD, Merck, Gedeon-Richter, Theramex, and IBSA. J.S.J. has received speaker’s fee from Hologic, B.D. and Cepheid and serves on scientific advisory boards of Roche Molecular Systems, Abbott Molecular, and Cepheid. P.H., T.H. and J.S.J. received a research grant from Osel inc. which produces LACTIN-V, a live biotherapeutic product with Lb. crispatus. P.H. and T.H. are listed as inventors in an international patent application (PCT/US2018/040882) involving “Use of vaginal lactobacilli for improving the success rate of in vitro fertilization”.

Figures

Figure 1
Figure 1
Composition of the vaginal virome by bacterial community status. Viral community composition by relative abundance, grouped by bacterial vaginosis (BV), abnormal vaginal microbiota (AVM), and the community state type (CST) of the sample bacterial community. Taxonomy based on viral database sequence match. Taxonomic entities are ordered top to bottom from most to least abundant.
Figure 2
Figure 2
The vaginal viral community was significantly correlated with the BV-status. (A) Vaginal virome composition (Bray Curtis dissimilarity metric) by BV-status and (B) Lactobacillus crispatus presence/absence (determined by qPCR). (C) The relative abundance of WISH host genus predictions of vOTUs by BV status. The significance was calculated using the Kruskall–Wallis Test (* p < 0.05, ** p < 10−3). (D) A scatter plot showing the Shannon diversity against the percentage of raw reads mapping to integrase genes by sample. Significance levels were calculated using the Pearson correlation.
Figure 3
Figure 3
Abundance of phages with beneficial hosts correlated negatively with an abundance of pathogenic bacteria and vice versa. The clustered image map (CIM) of regularized canonical correlation analysis (rCCA) between the relative abundances of bacterial and viral operational taxonomic units (vOTUs). The colour grade shows the strength of correlation between individual bacterial and viral OTUs. Viral clusters were summarized based on their bacterial host genus as predicted by WISH as only a minority had matches in the viral databases. Bacterial OTUs with several entries had distinct 16S sequences and were possibly different strains. Correlations above 0.7 are shown. CV-score = 0.82.

References

    1. Nunn K.L., Forney L.J. Unraveling the dynamics of the human vaginal microbiome. Yale J. Biol. Med. 2016;89:331–337.
    1. Ravel J., Gajer P., Abdo Z., Schneider G.M., Koenig S.S.K., McCulle S.L., Karlebach S., Gorle R., Russell J., Tacket C.O., et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA. 2011;108:4680–4687. doi: 10.1073/pnas.1002611107.
    1. Ma B., Forney L.J., Ravel J. Vaginal Microbiome: Rethinking Health and Disease Microbiota: Microbial community composition and structure. Annu. Rev. Microbiol. 2012;66:371–389. doi: 10.1146/annurev-micro-092611-150157.
    1. Martin D.H., Marrazzo J.M. The Vaginal Microbiome: Current Understanding and Future Directions. J. Infect. Dis. 2016;214:S36–S41. doi: 10.1093/infdis/jiw184.
    1. Zhou X., Brown C.J., Abdo Z., Davis C.C., Hansmann M.A., Joyce P., Foster J.A., Forney L.J. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J. 2007;1:121–133. doi: 10.1038/ismej.2007.12.
    1. Fettweis J.M., Paul Brooks J., Serrano M.G., Sheth N.U., Girerd P.H., Edwards D.J., Strauss J.F., Jefferson K.K., Buck G.A. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiol. U.K. 2014;160:2272–2282. doi: 10.1099/mic.0.081034-0.
    1. Allsworth J.E., Peipert J.F. Prevalence of bacterial vaginosis: 2001-2004 National Health and Nutrition Examination Survey data. Obstet. Gynecol. 2007;109:114–120. doi: 10.1097/01.AOG.0000247627.84791.91.
    1. Van de Wijgert J.H.H.M., Jespers V. The global health impact of vaginal dysbiosis. Res. Microbiol. 2017;168:859–864. doi: 10.1016/j.resmic.2017.02.003.
    1. Borgdorff H., Tsivtsivadze E., Verhelst R., Marzorati M., Jurriaans S., Ndayisaba G.F., Schuren F.H., van de Wijgert J.H.H.M. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in african women. ISME J. 2014;8:1781–1793. doi: 10.1038/ismej.2014.26.
    1. Haahr T., Zacho J., Bräuner M., Shathmigha K., Skov Jensen J., Humaidan P. Reproductive outcome of patients undergoing in vitro fertilization treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: A systematic PRISMA review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2018;126:200–207. doi: 10.1111/1471-0528.15178.
    1. Kenyon C.R., Buyze J., Klebanoff M., Brotman R.M. Association between bacterial vaginosis and partner concurrency: A longitudinal study. Sex. Transm. Infect. 2018;94:75–77. doi: 10.1136/sextrans-2016-052652.
    1. Marrazzo J.M., Fiedler T.L., Srinivasan S., Mayer B.T., Schiffer J.T., Fredricks D.N. Rapid and Profound Shifts in the Vaginal Microbiota Following Antibiotic Treatment for Bacterial Vaginosis. J. Infect. Dis. 2015;212:793–802. doi: 10.1093/infdis/jiv079.
    1. Gray R.H., Kigozi G., Serwadda D., Makumbi F., Nalugoda F., Watya S., Moulton L., Chen M.Z., Sewankambo N.K., Kiwanuka N., et al. The effects of male circumcision on female partners’ genital tract symptoms and vaginal infections in a randomized trial in Rakai, Uganda. Am. J. Obstet. Gynecol. 2009;200:42.e1–42.e7. doi: 10.1016/j.ajog.2008.07.069.
    1. Schwebke J.R., Muzny C.A., Josey W.E. Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: A conceptual model. J. Infect. Dis. 2014;210:338–343. doi: 10.1093/infdis/jiu089.
    1. Lepage P., Colombet J., Marteau P., Sime-Ngando T., Doré J., Leclerc M. Dysbiosis in inflammatory bowel disease: A role for bacteriophages? Gut. 2008;57:424–425. doi: 10.1136/gut.2007.134668.
    1. Barr J.J., Auro R., Furlan M., Whiteson K.L., Erb M.L., Pogliano J., Stotland A., Wolkowicz R., Cutting A.S., Doran K.S., et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. USA. 2013;110:10771–10776. doi: 10.1073/pnas.1305923110.
    1. Zuo T., Lu X.-J., Zhang Y., Cheung C.P., Lam S., Zhang F., Tang W., Ching J.Y.L., Zhao R., Chan P.K.S., et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 2019;68:1169–1179. doi: 10.1136/gutjnl-2018-318131. gutjnl-2018-318131.
    1. Barksdale L., Arden S.B. Persisting Bacteriophage Infections, Lysogeny, and Phage Conversions. Annu. Rev. Microbiol. 1974;28:265–300. doi: 10.1146/annurev.mi.28.100174.001405.
    1. De Paepe M., Leclerc M., Tinsley C.R., Petit M.-A. Bacteriophages: An underestimated role in human and animal health? Front. Cell. Infect. Microbiol. 2014;4:39. doi: 10.3389/fcimb.2014.00039.
    1. Pavlova S.I., Tao L. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrene diol epoxide. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2000;466:57–62. doi: 10.1016/S1383-5718(00)00003-6.
    1. Jamindar S., Polson S.W., Furman M., Nasko D.J., Srinivasiah S., Chen J., Bhavsar J., Dumas M., Wommack K.E. VIROME: A standard operating procedure for analysis of viral metagenome sequences. Stand. Genom. Sci. 2012;6:427–439. doi: 10.4056/sigs.2945050.
    1. Hurwitz B.L., Ponsero A., Thornton J., U’Ren J.M. Phage hunters: Computational strategies for finding phages in large-scale ‘omics datasets. Virus Res. 2018;244:110–115. doi: 10.1016/j.virusres.2017.10.019.
    1. Hatfull G.F., Hendrix R.W. Bacteriophages and their genomes. Curr. Opin. Virol. 2011;1:298–303. doi: 10.1016/j.coviro.2011.06.009.
    1. Minot S., Sinha R., Chen J., Li H., Keilbaugh S.A., Wu G.D., Lewis J.D., Bushman F.D. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616–1625. doi: 10.1101/gr.122705.111.
    1. Gosmann C., Anahtar M.N., Handley S.A., Farcasanu M., Abu-Ali G., Bowman B.A., Padavattan N., Desai C., Droit L., Moodley A., et al. Lactobacillus-Deficient Cervicovaginal Bacterial Communities Are Associated with Increased HIV Acquisition in Young South African Women. Immunity. 2017;46:29–37. doi: 10.1016/j.immuni.2016.12.013.
    1. Chen C., Li F., Wei W., Wang Z., Dai J., Hao L., Song L., Zhang X., Zeng L., Du H., et al. The metagenome of the female upper reproductive tract. Gigascience. 2018;7 doi: 10.1093/gigascience/giy107.
    1. Wylie K.M., Wylie T.N., Cahill A.G., Macones G.A., Tuuli M.G., Stout M.J. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obstet. Gynecol. 2018;219:189.e1–189.e12. doi: 10.1016/j.ajog.2018.04.048.
    1. Haahr T., Humaidan P., Elbaek H.O., Alsbjerg B., Laursen R.J., Rygaard K., Johannesen T.B., Andersen P.S., Ng K.L., Jensen J.S. Vaginal microbiota and IVF outcomes: Development of a simple diagnostic tool to predict patients at risk of a poor reproductive outcome. J. Infect. Dis. 2018;219:1809–1817. doi: 10.1093/infdis/jiy744.
    1. Haahr T., Ersbøll A.S., Karlsen M.A., Svare J., Sneider K., Hee L., Weile L.K., Ziobrowska-Bech A., Østergaard C., Jensen J.S., et al. Treatment of bacterial vaginosis in pregnancy in order to reduce the risk of spontaneous preterm delivery—A clinical recommendation. Acta Obstet. Gynecol. Scand. 2016;95:850–860. doi: 10.1111/aogs.12933.
    1. Robert P.N., Marijane A.K., Sharon L.H. Reliability of Diagnosing Bacterial Vaginosis Is Improved by Standardized Method of Gram Stain Interpretation. J. Clin. Microbiol. 1991;29:297–301. doi: 10.1073/pnas.1002611107/-/.
    1. Haahr T., Jensen J.S., Thomsen L., Duus L., Rygaard K., Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: A prospective study in IVF patients. Hum. Reprod. 2016;31:795–803. doi: 10.1093/humrep/dew026.
    1. Conceição-Neto N., Zeller M., Lefrère H., de Bruyn P., Beller L., Deboutte W., Yinda C.K., Lavigne R., Maes P., van Ranst M., et al. Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis. Sci. Rep. 2015;5:16532. doi: 10.1038/srep16532.
    1. Marine R., McCarren C., Vorrasane V., Nasko D., Crowgey E., Polson S.W., Wommack K.E. Caught in the middle with multiple displacement amplification: The myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome. 2014;2:3. doi: 10.1186/2049-2618-2-3.
    1. Liao Y., Smyth G.K., Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108. doi: 10.1093/nar/gkt214.
    1. Paulson J.N., Stine O.C., Bravo H.C., Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods. 2013;10:1200–1202. doi: 10.1038/nmeth.2658.
    1. Ramírez-Guzmán A., Taran Y., Armienta M.A. Geochemistry and origin of high-pH thermal springs in the Pacific coast of Guerrero, Mexico. Geofis. Int. 2004;43:415–425. doi: 10.1038/nmeth.f.303.
    1. Galiez C., Siebert M., Enault F., Vincent J., Söding J. WIsH: Who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics. 2017;33:3113–3114. doi: 10.1093/bioinformatics/btx383.
    1. Pruitt K.D., Tatusova T., Maglott D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–D65. doi: 10.1093/nar/gkl842.
    1. Bateman A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049.
    1. Serwer P. Evolution and the complexity of bacteriophages. Virol. J. 2007;4:30. doi: 10.1186/1743-422X-4-30.
    1. Rohart F., Gautier B., Singh A., Lê Cao K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752.
    1. Zozaya-Hinchliffe M., Lillis R., Martin D.H., Ferris M.J. Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. J. Clin. Microbiol. 2010;48:1812–1819. doi: 10.1128/JCM.00851-09.
    1. Emerson J.B., Thomas B.C., Andrade K., Allen E.E., Heidelberg K.B., Banfield J.F. Dynamic viral populations in hypersaline systems as revealed by metagenomic assembly. Appl. Environ. Microbiol. 2012;78:6309–6320. doi: 10.1128/AEM.01212-12.
    1. Squier A.H., Hodgson D.A., Keely B.J. Sedimentary pigments as markers for environmental change in an Antarctic lake. Org. Geochem. 2002;33:1655–1665. doi: 10.1016/S0146-6380(02)00177-8.
    1. Maslov S., Sneppen K. Well-temperate phage: Optimal bet-hedging against local environmental collapses. Sci. Rep. 2015;5:10523. doi: 10.1038/srep10523.
    1. Muzny C.A., Lensing S.Y., Aaron K.J., Schwebke J.R. Incubation period and risk factors support sexual transmission of bacterial vaginosis in women who have sex with women. Sex. Transm. Infect. 2019;95:511–515. doi: 10.1136/sextrans-2018-053824.
    1. Kim M.S., Bae J.W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 2018;12:1127–1141. doi: 10.1038/s41396-018-0061-9.
    1. Vostrov A.A., Vostrukhina O.A., Svarchevsky A.N., Rybchin V.N. Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J. Bacteriol. 1996;178:1484–1486. doi: 10.1128/JB.178.5.1484-1486.1996.
    1. Santiago-Rodriguez T.M., Hollister E.B. Human virome and disease: High-throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses. 2019;11:656. doi: 10.3390/v11070656.
    1. Dezzutti C.S., Hendrix C.W., Marrazzo J.M., Pan Z., Wang L., Louissaint N., Kalyoussef S., Torres N.M., Hladik F., Parikh U., et al. Performance of Swabs, Lavage, and Diluents to Quantify Biomarkers of Female Genital Tract Soluble Mucosal Mediators. PLoS ONE. 2011;6:e23136. doi: 10.1371/journal.pone.0023136.
    1. Reyes A., Wu M., McNulty N.P., Rohwer F.L., Gordon J.I. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. Proc. Natl. Acad. Sci. USA. 2013;110:20236–20241. doi: 10.1073/pnas.1319470110.
    1. Lawrence D., Baldridge M.T., Handley S.A. Phages and human health: More than idle hitchhikers. Viruses. 2019;11:587. doi: 10.3390/v11070587.

Source: PubMed

3
Subscribe