Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective

Roger Gassert, Volker Dietz, Roger Gassert, Volker Dietz

Abstract

The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.

Keywords: Assist-as-needed; Locomotion; Neuroplasticity; Neurorehabilitation technology; Robot-assisted therapy; Sensorimotor neurophysiology; Spinal cord injury; Stroke; Upper limb function.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Competing interests

Volker Dietz is member of the Scientific Advisory Board of Hocoma AG.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schematic representation and classification of rehabilitation robots. Besides the extremity that is trained, rehabilitation robots can be broadly classified into grounded exoskeletons, end-effector devices and wearable exoskeletons. While the first two are well established, the latter are currently entering clinical application [–, , , –140]
Fig. 2
Fig. 2
Upper panel: Evolution of upper extremity rehabilitation robots. From stiff (high impedance) industrial manipulators to dedicated rehabilitation robots providing control at the distal effector or over each joint, including the rendering of virtual object dynamics resulting in somatosensory feedback. Further evolution of the technology will see wearable systems providing support not only during therapy sessions, but also during activities of daily living in the home environment, allowing physical interaction with real objects. Lower panel: Task-specific design of hand rehabilitation robots. Functional hand movement training should focus not only on unimanual, i.e. reach and grasp tasks (left), but should also include bimanual separate tasks (middle), as well as cooperative movement tasks that are employed, e.g., when opening a bottle (right)
Fig. 3
Fig. 3
Evolution of lower extremity rehabilitation robots. Since their introduction, rehabilitation robots for the lower extremity have evolved from stiff industrial robot arms to guide the limb passively, without cognitive or physical involvement of the patient, to systems allowing for active engagement of patients through adapted support and body weight unloading in a vertical posture. Currently, wearable exoskeletons are being introduced into clinical practice, promoting even more active engagement of the patient, while balance is provided by crutches. Future exoskeletons will support balance to the degree needed. The three systems to the right are inspired by neurophysiological insights, stimulating afferent receptors through, e.g., weight loading, ground contact and assisted hip extension to trigger leg flexion movements. From left to right, patients require increasing functional abilities, while the robotic systems provide less support. Most patients will benefit from several of these systems (from left to right) during different phases of recovery

References

    1. Reinkensmeyer D, Dietz V. Neurorehabilitation Technology. 2nd ed. Springer, Cham; 2016.
    1. Khalili D, Zomlefer M. An intelligent robotic system for rehabilitation of joints and estimation of body segment parameters. IEEE Trans Biomed Eng. 1988;35(2):138–146. doi: 10.1109/10.1352.
    1. Rabishong P, Bel J, Hill J, Peruchon E, Simeon M, Screve J, et al. Proc Int Symp external control hum extremities. 1975. The AMOLL project (active modular orthosis for lower limbs) pp. 33–42.
    1. Seireg A, Grundmann J. Design of a multitask exoskeletal walking device for paraplegics. Biomechanics of medical devices. 1981:569–644.
    1. Vukobratovic M, Hristic D, Stojiljkovic Z. Development of active anthropomorphic exoskeletons. Med Biol Eng. 1974;12(1):66–80. doi: 10.1007/BF02629836.
    1. Ali H. Bionic exoskeleton: history, development and the future. In: International conference on advances in Engineering & Technology: IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE); 2014;58–62.
    1. Rabischong P. Pneumatic Exoskeleton Prosthesis http://cyberneticzoocom/bionics/1976-pneumatic-exoskeleton-prosthesis-pierre-rabischong-french/. 1976.
    1. Dijkers MP, de Bear PC, Erlandson RF, Kristy K, Geer DM, Nichols A. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. J Rehabil Res Dev. 1991;28(2):33–44. doi: 10.1682/JRRD.1991.04.0033.
    1. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87. doi: 10.1109/86.662623.
    1. Lum PS, Reinkensmeyer DJ, Lehman SL. Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Trans Rehabil Eng. 1993;1(3):185–191. doi: 10.1109/86.279267.
    1. Lum PS, Lehman SL, Reinkensmeyer DJ. The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients. IEEE Trans Rehabil Eng. 1995;3(2):166–174. doi: 10.1109/86.392371.
    1. Burgar CG, Lum PS, Shor PC, Machiel Van der Loos HF. Development of robots for rehabilitation therapy: the Palo alto VA/Stanford experience. J Rehabil Res Dev. 2000;37(6):663–673.
    1. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.
    1. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–708.
    1. Just F, Baur K, Klamroth-Marganska V, Riener R, Rauter G. Motor inertia compensation of the ARMin rehabilitation robot. In: AUTOMED workshop 2016: Hochschule Wismar; 2016.
    1. Metzger JC, Lambercy O, Gassert, R. Performance comparison of interaction control strategies on a hand rehabilitation robot. IEEE International Conference on Rehabilitation Robotics (ICORR). 2015;846–851. 10.1109/ICORR.2015.7281308.
    1. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–166. doi: 10.1016/S1474-4422(13)70305-3.
    1. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772–1783. doi: 10.1056/NEJMoa0911341.
    1. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23(6):661–670. doi: 10.1097/WCO.0b013e32833e99a4.
    1. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–121. doi: 10.1177/1545968307305457.
    1. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387–416. doi: 10.1682/JRRD.2010.04.0055.
    1. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–167. doi: 10.1146/annurev.neuro.27.070203.144308.
    1. Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001;24(8):1000–1019. doi: 10.1002/mus.1104.
    1. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137(Pt 3):654–667. doi: 10.1093/brain/awt262.
    1. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609–616. doi: 10.1097/WCO.0000000000000025.
    1. Zarahn E, Alon L, Ryan SL, Lazar RM, Vry MS, Weiller C, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex. 2011;21(12):2712–2721. doi: 10.1093/cercor/bhr047.
    1. Curt A, Van Hedel HJ, Klaus D, Dietz V. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–685. doi: 10.1089/neu.2007.0468.
    1. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22:64–71. doi: 10.1177/1545968307305302.
    1. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22(3–5):281–299.
    1. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–622. doi: 10.1177/1545968314562115.
    1. Jakob W, Wirz M, van Hedel HJ, Dietz V. Difficulty of elderly SCI subjects to translate motor recovery—“body function”--into daily living activities. J Neurotrauma. 2009;26(11):2037–2044. doi: 10.1089/neu.2008.0824.
    1. Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:5. doi: 10.1186/1743-0003-6-5.
    1. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. doi: 10.1097/.
    1. Saposnik G, Levin M, Group ORCW Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–1386. doi: 10.1161/STROKEAHA.110.605451.
    1. Latash M, Anson J. What are “normal movements” in atypic populations? Behav Brain Sci. 1996;19:55–106. doi: 10.1017/S0140525X00041467.
    1. O'Dwyer NJ, Ada L, Neilson PD. Spasticity and muscle contracture following stroke. Brain. 1996;119:1737–1749. doi: 10.1093/brain/119.5.1737.
    1. Dietz V, Sinkjaer T. Secondary changes after CNS damage: the significance of spastic muscle tone in rehabilitation. In: Dietz V, Ward N, editors. Oxford textbook of neurorehabilitation. Oxford: Oxford University Press; 2015.
    1. Katz RT, Rymer WZ. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil. 1989;70(2):144–155.
    1. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–733. doi: 10.1016/S1474-4422(07)70193-X.
    1. Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–248. doi: 10.1016/S0004-9514(06)70003-4.
    1. Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354(9174):191–196. doi: 10.1016/S0140-6736(98)09477-X.
    1. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–2058. doi: 10.1161/STROKEAHA.114.004695.
    1. Wu X, Guarino P, Lo AC, Peduzzi P, Wininger M. Long-term effectiveness of intensive therapy in chronic stroke. Neurorehabil Neural Repair. 2016;30(6):583–590. doi: 10.1177/1545968315608448.
    1. Lang CE, Strube MJ, Bland MD, Waddell KJ, Cherry-Allen KM, Nudo RJ, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–354. doi: 10.1002/ana.24734.
    1. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–990. doi: 10.1016/j.apmr.2014.10.022.
    1. Waddell KJ, Strube MJ, Bailey RR, Klaesner JW, Birkenmeier RL, Dromerick AW, et al. Does task-specific training improve upper limb performance in daily life Poststroke? Neurorehabil Neural Repair. 2017;31(3):290–300. doi: 10.1177/1545968316680493.
    1. Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, et al. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 2013;10:112. doi: 10.1186/1743-0003-10-112.
    1. Schaefer SY, Patterson CB, Lang CE. Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil Neural Repair. 2013;27(7):602–612. doi: 10.1177/1545968313481279.
    1. Wirz M, Mach O, Maier D, Benito-Penalva J, Taylor J, Esclarin A, et al. Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. J Neurotrauma. 2017;34:1891–1896. doi: 10.1089/neu.2016.4643.
    1. Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–1698. doi: 10.1016/j.apmr.2009.04.005.
    1. Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–694. doi: 10.1682/JRRD.2005.02.0046.
    1. Marchal-Crespo L, McHughen S, Cramer SC, Reinkensmeyer DJ. The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task. Exp Brain Res. 2010;201(2):209–220. doi: 10.1007/s00221-009-2026-8.
    1. Metzger JC, Lambercy O, Califfi A, Conti FM, Gassert R. Neurocognitive robot-assisted therapy of hand function. IEEE Trans Haptics. 2014;7(2):140–149. doi: 10.1109/TOH.2013.72.
    1. Metzger JC, Lambercy O, Califfi A, Dinacci D, Petrillo C, Rossi P, et al. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. J Neuroeng Rehabil. 2014;11:154. doi: 10.1186/1743-0003-11-154.
    1. Zimmerli L, Krewer C, Gassert R, Muller F, Riener R, Lunenburger L. Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke. J Neuroeng Rehabil. 2012;9:6. doi: 10.1186/1743-0003-9-6.
    1. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–584. doi: 10.1093/brain/123.3.572.
    1. Lambercy O, Maggioni S, Lünenburger L, Gassert R, Bolliger M. Robotic and wearable sensor Technologies for Measurements/Clinical Assessments. In: Reinkensmeyer D, Dietz V, editors. Neurorehabilitation Technology. Springer: Cham; 2016.
    1. Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil. 2012;9:65. doi: 10.1186/1743-0003-9-65.
    1. Herder JG. Ideen zur Philiosophie der Geschichte der Menschheit, Bd. 1 edn. Leipzig.Hartknoch; 1785.
    1. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195–218. doi: 10.1146/annurev.neuro.31.060407.125547.
    1. Jorgensen HS, Reith J, Nakayama H, Kammersgaard LP, Raaschou HO, Olsen TS. What determines good recovery in patients with the most severe strokes? The Copenhagen Stroke Study Stroke. 1999;30(10):2008–2012.
    1. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006;129(Pt 3):809–819. doi: 10.1093/brain/awl002.
    1. Byblow WD, Stinear CM, Barber PA, Petoe MA, Ackerley SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015;78(6):848–859. doi: 10.1002/ana.24472.
    1. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation--a clinical review. J Rehabil Res Dev. 1999;36(3):237–251.
    1. Stoykov ME, Lewis GN, Corcos DM. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil Neural Repair. 2009;23:945–953. doi: 10.1177/1545968309338190.
    1. Kilbreath SL, Heard RC. Frequency of hand use in healthy older persons. Aust J Physiother. 2005;51(2):119–122. doi: 10.1016/S0004-9514(05)70040-4.
    1. Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2012;50(3):220–226. doi: 10.1038/sc.2011.104.
    1. Dietz V, Curt A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol. 2006;5(8):688–694. doi: 10.1016/S1474-4422(06)70522-1.
    1. Stinear CM, Byblow WD, Ackerley SJ, Smith MC, Borges VM, Barber PA. Proportional motor recovery after stroke: implications for trial design. Stroke. 2017;48(3):795–798. doi: 10.1161/STROKEAHA.116.016020.
    1. Rowe JB, Chan V, Ingemanson ML, Cramer SC, Wolbrecht ET, Reinkensmeyer DJ. Robotic assistance for training finger movement using a Hebbian model: a randomized controlled trial. Neurorehabil Neural Repair. 2017;31(8):769–780. doi: 10.1177/1545968317721975.
    1. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. doi: 10.1371/journal.pone.0087987.
    1. Marciniak C, Rader L, Gagnon C. The use of botulinum toxin for spasticity after spinal cord injury. Am J Phys Med Rehabil. 2008;87(4):312–317. doi: 10.1097/PHM.0b013e318168ceaf.
    1. Taub E, Crago JE, Burgio LD, Groomes TE, Cook EW, 3rd, DeLuca SC, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61(2):281–293. doi: 10.1901/jeab.1994.61-281.
    1. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608. doi: 10.1038/nrneurol.2014.162.
    1. Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14(2):224–234. doi: 10.1016/S1474-4422(14)70160-7.
    1. Beer RF, Ellis MD, Holubar BG, Dewald JP. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve. 2007;36(2):242–250. doi: 10.1002/mus.20817.
    1. Lan Y, Yao J, Dewald J. Increased shoulder abduction loads decreases volitional finger extension in individuals with chronic stroke: preliminary findings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2014;5808–5811.
    1. McCombe Waller S, Whitall J. Bilateral arm training: why and who benefits? NeuroRehabilitation. 2008;23(1):29–41.
    1. Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil. 2000;22(1–2):23–37. doi: 10.1080/096382800297097.
    1. Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292(15):1853–1861. doi: 10.1001/jama.292.15.1853.
    1. Lin KC, Chen YA, Chen CL, Wu CY, Chang YF. The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabil Neural Repair. 2010;24(1):42–51. doi: 10.1177/1545968309345268.
    1. van Delden AL, Beek PJ, Roerdink M, Kwakkel G, Peper CL. Unilateral and bilateral upper-limb training interventions after stroke have similar effects on bimanual coupling strength. Neurorehabil Neural Repair. 2015;29(3):255–267. doi: 10.1177/1545968314543498.
    1. Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–2395. doi: 10.1161/01.STR.31.10.2390.
    1. Dietz V, Macauda G, Schrafl-Altermatt M, Wirz M, Kloter E, Michels L. Neural coupling of cooperative hand movements: a reflex and FMRI study. Cereb Cortex. 2015;25(4):948–958. doi: 10.1093/cercor/bht285.
    1. Schrafl-Altermatt M, Dietz V. Cooperative hand movements in stroke patients: neural reorganization. Clin Neurophysiol. 2016;127(1):748–754. doi: 10.1016/j.clinph.2015.07.004.
    1. Johansson RS. How is grasping modifed by somatosensory input. Motor Control: Consepts and Issues. 1991;14:331–5.
    1. Carey L, Macdonell R, Matyas TA. SENSe: study of the effectiveness of neurorehabilitation on sensation: a randomized controlled trial. Neurorehabil Neural Repair. 2011;25(4):304–313. doi: 10.1177/1545968310397705.
    1. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54(4):443–446. doi: 10.1001/archneur.1997.00550160075019.
    1. Loureiro R, Amirabdollahian F, Topping M, Driessen B, Harwin W. Upper limb robot mediated stroke therapy - GENTLE/s approch. Auton Robot. 2003;15(1):35–51. doi: 10.1023/A:1024436732030.
    1. Masia L, Krebs HI, Cappa P, Hogan N. Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE ASME Trans Mechatron. 2007;12(4):399–407. doi: 10.1109/TMECH.2007.901928.
    1. Loureiro RC, Lamperd B, Collin C, Harwin WS. Reach & grasp therapy: Effects of the Gentle/G System assessing sub-acute stroke whole-arm rehabilitation. IEEE International Conference on Rehabilitation Robotics. 2009;755–760.
    1. Nef T, Klamroth-Marganska V, Keller U, Riener R. Three-dimensional multi-degree-of-freedom arm therapy robot (ARMin). In Neurorehabilitation Technology. Springer: Cham. 2016;351–374.
    1. Nef T, Riener R. Three-dimensional-multi-degree of freedom arm therapy robot (ARMin) In: Dietz V, Nef T, Rymer WZ, editors. Neurorehabilitation technology. London: Springer; 2012.
    1. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–514. doi: 10.1177/1545968308331148.
    1. Lambercy O, Dovat L, Yun H, Wee SK, Kuah CW, Chua KS, et al. Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J Neuroeng Rehabil. 2011;8:63.
    1. In H, Kang BB, Sin M, Cho KJ. Exo glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robotics & Automation Magazine 2015; 1(Mar 22):97-105.
    1. Arata J, Ohmoto K, Gassert R, Lambercy O, Fujimoto H, Wada I. A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism. IEEE International Conference on Robotics and Automation. 2013;3902–3907. 10.1109/ICRA.2013.6631126.
    1. Metzger JC, Lambercy O, Gassert R. High-fidelity rendering of virtual objects with the ReHapticKnob - Novel avenues in robot-assisted rehabilitation of hand function. IEEE Haptics Symposium. 2012;51–6. 10.1109/HAPTIC.2012.6183769.
    1. Brouwer B, Ashby P. Corticospinal projections to lower limb motoneurons in man. Exp Brain Res. 1992;89(3):649–654. doi: 10.1007/BF00229889.
    1. Schubert M, Curt A, Jensen L, Dietz V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res. 1997;115(2):234–246. doi: 10.1007/PL00005693.
    1. Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87(9):1218–1222. doi: 10.1016/j.apmr.2006.05.024.
    1. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–680. doi: 10.1016/j.apmr.2004.08.004.
    1. Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987;25(3):341–344. doi: 10.1007/BF02447435.
    1. Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial. Neurorehabil Neural Repair. 2007;21(1):25–35. doi: 10.1177/1545968306295556.
    1. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–2036. doi: 10.1056/NEJMoa1010790.
    1. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke. 2002;33(2):553–558. doi: 10.1161/hs0202.102365.
    1. Sandler EB, Roach KE, Field-Fote EC. Dose-response outcomes associated with different forms of locomotor training in persons with chronic motor-incomplete spinal cord injury. J Neurotrauma. 2017;34(10):1903–1908. doi: 10.1089/neu.2016.4555.
    1. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994;344(8932):1260–1263. doi: 10.1016/S0140-6736(94)90751-X.
    1. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–582. doi: 10.1002/ana.410370506.
    1. Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002;125(Pt 12):2626–2634. doi: 10.1093/brain/awf273.
    1. Den Otter AR, Geurts AC, Mulder T, Duysens J. Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis. Clin Neurophysiol. 2006;117(1):4–15. doi: 10.1016/j.clinph.2005.08.014.
    1. Grillner S, Rossignol S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 1978;146(2):269–277. doi: 10.1016/0006-8993(78)90973-3.
    1. Kriellaars DJ, Brownstone RM, Noga BR, Jordan LM. Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol. 1994;71(6):2074–2086. doi: 10.1152/jn.1994.71.6.2074.
    1. Lin CS, Macefield VG, Elam M, Wallin BG, Engel S, Kiernan MC. Axonal changes in spinal cord injured patients distal to the site of injury. Brain. 2007;130(Pt 4):985–994.
    1. Dietz V, Muller R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain. 2004;127(Pt 10):2221–2231. doi: 10.1093/brain/awh255.
    1. Beauparlant J, van den Brand R, Barraud Q, Friedli L, Musienko P, Dietz V, et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain. 2013;136(Pt 11):3347–3361. doi: 10.1093/brain/awt204.
    1. Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009;132(Pt 8):2196–2205. doi: 10.1093/brain/awp124.
    1. Dietz V. Do human bipeds use quadrupedal coordination? Trends Neurosci. 2002;25(9):462–467. doi: 10.1016/S0166-2236(02)02229-4.
    1. Pauvert V, Pierrot-Deseilligny E, Rothwell JC. Role of spinal premotoneurones in mediating corticospinal input to forearm motoneurones in man. J Physiol. 1998;508:301–312. doi: 10.1111/j.1469-7793.1998.301br.x.
    1. de Kam D, Rijken H, Manintveld T, Nienhuis B, Dietz V, Duysens J. Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals. J Appl Physiol (1985) 2013;115(1):34–42. doi: 10.1152/japplphysiol.00510.2012.
    1. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66(4):484–493. doi: 10.1212/01.wnl.0000202600.72018.39.
    1. Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane database Syst Rev. 2017;5:CD006185.
    1. Hesse S, Schattat N, Mehrholz J, Werner C. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion. NeuroRehabilitation. 2013;33(1):77–84.
    1. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lünenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18:38–48. doi: 10.1109/TNSRE.2009.2033061.
    1. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–386. doi: 10.1109/TNSRE.2007.903919.
    1. Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39(3):910–917. doi: 10.1161/STROKEAHA.107.505313.
    1. Carda S, Biasiucci A, Maesani A, Ionta S, Moncharmont J, Clarke S, et al. Electrically assisted movement therapy in chronic stroke patients with severe upper limb paresis: a pilot, single-blind, randomized crossover study. Arch Phys Med Rehabil. 2017;98(8):1628–1635. doi: 10.1016/j.apmr.2017.02.020.
    1. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–375. doi: 10.1038/nature11076.
    1. Wolpert DM, Flanagan JR. Q&A: robotics as a tool to understand the brain. BMC Biol. 2010;8:92.
    1. Loureiro RC, Harwin WS, Nagai K, Johnson M. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput. 2011;49(10):1103–1118. doi: 10.1007/s11517-011-0797-0.
    1. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3. doi: 10.1186/1743-0003-11-3.
    1. Sheng B, Zhang Y, Meng W, Deng C, Xie S. Bilateral robots for upper-limb stroke rehabilitation: state of the art and future prospects. Med Eng Phys. 2016;38(7):587–606. doi: 10.1016/j.medengphy.2016.04.004.
    1. Lum PS, Godfrey SB, Brokaw EB, Holley RJ, Nichols D. Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S242–S254. doi: 10.1097/PHM.0b013e31826bcedb.
    1. Bos RA, Haarman CJ, Stortelder T, Nizamis K, Herder JL, Stienen AH, et al. A structured overview of trends and technologies used in dynamic hand orthoses. J Neuroeng Rehabil. 2016;13(1):62. doi: 10.1186/s12984-016-0168-z.
    1. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews 2015, Issue 11. Art. No.: CD006876. 10.1002/14651858.CD006876.pub4.
    1. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–121. doi: 10.1177/1545968316666957.
    1. Diaz I, Gil JJ, Sanchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 2011;2011:1-11. 10.1155/2011/759764.
    1. Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez R, Murillo N, et al. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch Phys Med Rehabil. 2012;93(3):404–412. doi: 10.1016/j.apmr.2011.08.028.
    1. Nam KY, Kim HJ, Kwon BS, Park JW, Lee HJ, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14(1):24. doi: 10.1186/s12984-017-0232-3.
    1. Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil. 2016;13(1):53. doi: 10.1186/s12984-016-0162-5.

Source: PubMed

3
Subscribe