Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range

Robert V Mulkern, Agnieszka Szot Barnes, Steven J Haker, Yin P Hung, Frank J Rybicki, Stephan E Maier, Clare M C Tempany, Robert V Mulkern, Agnieszka Szot Barnes, Steven J Haker, Yin P Hung, Frank J Rybicki, Stephan E Maier, Clare M C Tempany

Abstract

Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.

Figures

Figure 1
Figure 1
a) T2-weighted FSE image; b) LSDI geometric mean image with b = 5 s/mm2; c) LSDI geometric mean image with b = 3,500 s/mm2. Typical ROIs in the central gland (CG), peripheral zone (PZ) and noise from which data was extracted for quantitative diffusion analyses are shown in each image.
Figure 2
Figure 2
Plots of the logarithm of signal decay with b-factor as extracted from the CG and PZ ROIs of all nine men. Shown are the interindividual mean ± SD (N = 9) signal intensities normalized to the lowest b-factor image. Also shown are the inter- individual mean ± SD (N = 9) noise values at each b-factor normalized to the lowest b- factor CG and PZ signal intensities.

Source: PubMed

3
Subscribe