Cost-Effectiveness of Pyrotinib Plus Capecitabine versus Lapatinib Plus Capecitabine for the Treatment of HER2-Positive Metastatic Breast Cancer in China: A Scenario Analysis of Health Insurance Coverage

Yuwen Bao, Zhuolin Zhang, Xuan He, Lele Cai, Xiao Wang, Xin Li, Yuwen Bao, Zhuolin Zhang, Xuan He, Lele Cai, Xiao Wang, Xin Li

Abstract

Background: The overexpression of the human epidermal growth factor receptor-2 (HER2) gene is present in 20~25% of breast cancer (BC) patients, contributing to an inferior prognosis. Recent clinical trials showed that pyrotinib has promising antitumor activities and acceptable tolerability for those patients (ClinicalTrials.gov, NCT03080805 and NCT02422199). Therefore, this study aims to assess the cost-effectiveness of pyrotinib plus capecitabine versus lapatinib plus capecitabine for patients with HER2-positive metastatic BC after prior trastuzumab.

Methods: A lifetime-partitioned survival model was established to evaluate health and economic outcomes with different treatment strategies. The primary outcome was the incremental cost-effectiveness ratio (ICER). Data were derived from the published literature, clinical trials, expert opinions, and other local charges. Sensitivity analyses were performed to assess the robustness of the findings. Scenario analyses were developed to make further evaluations.

Results: The pyrotinib regimen had significant advantages over the lapatinib regimen after enrolling in the National Reimbursement Drug List (NRDL), with cost savings of USD 15,599.27 and a gain of 0.53 QALYs. Meanwhile, before enrolling in NRDL, the pyrotinib regimen afforded the same QALYs at a higher incremental cost of USD 45,400.64 versus the lapatinib regimen, producing an ICER of USD 85,944.79 per QALY. Scenario analyses yielded similar results. Sensitivity analyses suggested stability in the cost-effectiveness findings.

Conclusions: Compared to lapatinib plus capecitabine, the pyrotinib plus capecitabine enrolled in NRDL is a cost-effective alternative second-line treatment for patients with HER2-positive metastatic BC in China.

Keywords: cost-effectiveness; health insurance coverage; lapatinib; metastatic breast cancer; partitioned survival model; pyrotinib.

Conflict of interest statement

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure A1
Figure A1
ICER Scatter plot. (a) ICER Scatter plot of pyrotinib-A plus capecitabine versus lapatinib plus capecitabine; (b) ICER Scatter plot of pyrotinib-B plus capecitabine versus lapatinib plus capecitabine. Abbreviations: ICER, Incremental cost-effectiveness ratio; pyrotinib-A, pyrotinib before being enrolled in the National Reimbursement Drug List; pyrotinib-B, pyrotinib after being enrolled in the National Reimbursement Drug List.
Figure 1
Figure 1
Partitioned survival model for HER2-positive metastatic breast cancer patients. Abbreviations: PFS, progression-free survival; PD, progressive disease; HER2, human epidermal growth factor receptor 2.
Figure 2
Figure 2
Kaplan–Meier Curve and Lognormal-estimated progression-free survival (a) and overall survival (b) with pyrotinib plus capecitabine and lapatinib plus capecitabine. Abbreviations: PYR, pyrotinib; LAP, lapatinib.
Figure 3
Figure 3
Tornado diagram for one-way sensitivity analysis of pyrotinib-A plus capecitabine versus lapatinib plus capecitabine. Abbreviations: pyrotinib-A, pyrotinib before being enrolled in National Reimbursement Drug List; PFS, progression-free survival; PD, progressive disease; sub, subsequent.
Figure 4
Figure 4
Tornado diagram for one-way sensitivity analysis of pyrotinib-B plus capecitabine versus lapatinib plus capecitabine. Abbreviations: pyrotinib-B, pyrotinib after being enrolled in National Reimbursement Drug List; PFS, progression-free survival; PD, progressive disease; sub, subsequent.
Figure 5
Figure 5
Cost-effectiveness acceptability curve between pyrotinib-A plus capecitabine and lapatinib plus capecitabine. Notes: Blue line indicates pyrotinib-A regimen, and red line indicates lapatinib regimen. Abbreviations: CEAC, cost-effectiveness acceptability curve; pyrotinib-A, pyrotinib before being enrolled in National Reimbursement Drug List; QALY, quality-adjusted life-year.
Figure 6
Figure 6
Cost-effectiveness acceptability curve between pyrotinib-B plus capecitabine and lapatinib plus capecitabine. Notes: Blue line indicates pyrotinib-B regimen, and red line indicates lapatinib regimen. Abbreviations: CEAC, cost-effectiveness acceptability curve; pyrotinib-B, pyrotinib after being enrolled in National Reimbursement Drug List; QALY, quality-adjusted life-year.

References

    1. Harbeck N., Gnant M. Breast cancer. Lancet. 2017;389:1134–1150. doi: 10.1016/S0140-6736(16)31891-8.
    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660.
    1. Lei S., Zheng R., Zhang S., Wang S., Chen R., Sun K., Zeng H., Zhou J., Wei W. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021;41:1183–1194. doi: 10.1002/cac2.12207.
    1. Li T., Mello-Thoms C., Brennan P.C. Descriptive epidemiology of breast cancer in China: Incidence, mortality, survival and prevalence. Breast Cancer Res. Treat. 2016;159:395–406. doi: 10.1007/s10549-016-3947-0.
    1. Cao M., Li H., Sun D., Chen W. Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun. 2020;40:205–210. doi: 10.1002/cac2.12025.
    1. Xia C., Dong X., Li H., Cao M., Sun D., He S., Yang F., Yan X., Zhang S., Li N., et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022;135:584–590. doi: 10.1097/CM9.0000000000002108.
    1. Fidler M.M., Bray F., Soerjomataram I. The global cancer burden and human development: A review. Scand. J. Public Health. 2017;46:27–36. doi: 10.1177/1403494817715400.
    1. Cao W., Chen H.-D., Yu Y.-W., Li N., Chen W.-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021;134:783–791. doi: 10.1097/CM9.0000000000001474.
    1. Garrison L.P., Jr., Lubeck D., Lalla D., Paton V., Dueck A., Perez E.A. Cost-effectiveness analysis of trastuzumab in the adjuvant setting for treatment of HER2-positive breast cancer. Cancer. 2007;110:489–498. doi: 10.1002/cncr.22806.
    1. Durkee B.Y., Qian Y., Pollom E.L., King M.T., Dudley S.A., Shaffer J.L., Chang D.T., Gibbs I.C., Goldhaber-Fiebert J.D., Horst K.C. Cost-Effectiveness of Pertuzumab in Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer. J. Clin. Oncol. 2016;34:902–909. doi: 10.1200/JCO.2015.62.9105.
    1. Lin Y., Lin M., Zhang J., Wang B., Tao Z., Du Y., Zhang S., Cao J., Wang L., Hu X. Real-World Data of Pyrotinib-Based Therapy in Metastatic HER2-Positive Breast Cancer: Promising Efficacy in Lapatinib-Treated Patients and in Brain Metastasis. Cancer Res. Treat. 2020;52:1059–1066. doi: 10.4143/crt.2019.633.
    1. Yang H., Wang W. Comparison of pyrotinib or lapatinib with chemotherapy for patients with HER2 positive breast cancer after first-line treatment failure: A retrospective study. Am. J. Transl. Res. 2021;13:10863–10870.
    1. Li Y., Qiu Y., Li H., Luo T., Li W., Wang H., Shao B., Wang B., Ge R. Pyrotinib Combined with Vinorelbine in HER2-Positive Metastatic Breast Cancer: A Multicenter Retrospective Study. Front. Oncol. 2021;11:664429. doi: 10.3389/fonc.2021.664429.
    1. Diaby V., Almutairi R.D., Babcock A., Moussa R.K., Ali A. Cost-effectiveness of treatments for HER2-positive metastatic breast cancer and associated metastases: An overview of systematic reviews. Expert Rev. Pharm. Outcomes Res. 2020;21:353–364. doi: 10.1080/14737167.2021.1848553.
    1. Loibl S., Gianni L. HER2-positive breast cancer. Lancet. 2016;389:2415–2429. doi: 10.1016/S0140-6736(16)32417-5.
    1. Chen Q., Ouyang D., Anwar M., Xie N., Wang S., Fan P., Qian L., Chen G., Zhou E., Guo L., et al. Effectiveness and Safety of Pyrotinib, and Association of Biomarker with Progression-Free Survival in Patients with HER2-Positive Metastatic Breast Cancer: A Real-World, Multicentre Analysis. Front. Oncol. 2020;10:811. doi: 10.3389/fonc.2020.00811.
    1. Dai M.S., Feng Y.H., Chen S.W., Masuda N., Yau T., Chen S.T., Lu Y.S., Yap Y.S., Ang P.C.S., Chu S.C., et al. Analysis of the pan-Asian subgroup of patients in the NALA Trial: A randomized phase III NALA Trial comparing neratinib+capecitabine (N+C) vs lapatinib+capecitabine (L+C) in patients with HER2+metastatic breast cancer (mBC) previously treated with two or more HER2-directed regimens. Breast Cancer Res. Treat. 2021;189:665–676. doi: 10.1007/s10549-021-06313-5.
    1. Candon D., Healy J., Crown J. Modelling the cost-effectiveness of adjuvant lapatinib for early-stage breast cancer. Acta Oncol. 2013;53:201–208. doi: 10.3109/0284186X.2013.840740.
    1. Le Q.A., Hay J.W. Cost-effectiveness analysis of lapatinib in HER-2-positive advanced breast cancer. Cancer. 2009;115:489–498. doi: 10.1002/cncr.24033.
    1. Wang H., Wang Y., Gong R., Geng Y., Li L. Cost-effectiveness of pertuzumab and trastuzumab as a first-line treatment of HER2-positive metastatic breast cancer in China. Ann. Palliat. Med. 2021;10:11382–11393. doi: 10.21037/apm-21-2412.
    1. Schlam I., Swain S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now. NPJ Breast Cancer. 2021;7:56. doi: 10.1038/s41523-021-00265-1.
    1. Wang C., Lin Y., Zhou Y., Mao F., Zhu H., Guan J., Zhang X., Shen S., Huang X., Chen C., et al. Pyrotinib with trastuzumab and aromatase inhibitors as first-line treatment for HER2 positive and hormone receptor positive metastatic or locally advanced breast cancer: Study protocol of a randomized controlled trial. BMC Cancer. 2020;20:653. doi: 10.1186/s12885-020-07143-2.
    1. Gao Z., Xu J., Wang Y., Wu J., Sun T. Case Report: Effective Treatment with Pyrotinib and Capecitabine in a Heavily Pretreated Locally Advanced Breast Cancer Harboring Both HER2 Overexpression and Mutant. Front. Oncol. 2021;11:715554. doi: 10.3389/fonc.2021.715554.
    1. Ma F., Li Q., Chen S., Zhu W., Fan Y., Wang J., Luo Y., Xing P., Lan B., Li M., et al. Phase I Study and Biomarker Analysis of Pyrotinib, a Novel Irreversible Pan-ErbB Receptor Tyrosine Kinase Inhibitor, in Patients with Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer. J. Clin. Oncol. 2017;35:3105–3112. doi: 10.1200/JCO.2016.69.6179.
    1. Yan M., Bian L., Hu X., Zhang Q., Ouyang Q., Feng J., Yin Y., Sun T., Tong Z., Wang X., et al. Pyrotinib plus capecitabine for human epidermal growth factor receptor 2-positive metastatic breast cancer after trastuzumab and taxanes (PHENIX): A randomized, double-blind, placebo-controlled phase 3 study. Transl. Breast Cancer Res. 2020;1:13. doi: 10.21037/tbcr-20-25.
    1. Xu B., Yan M., Ma F., Hu X., Feng J., Ouyang Q., Tong Z., Li H., Zhang Q., Sun T., et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22:351–360. doi: 10.1016/S1470-2045(20)30702-6.
    1. Ma F., Ouyang Q., Li W., Jiang Z., Tong Z., Liu Y., Li H., Yu S., Feng J., Wang S., et al. Pyrotinib or Lapatinib Combined with Capecitabine in HER2–Positive Metastatic Breast Cancer With Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. J. Clin. Oncol. 2019;37:2610–2619. doi: 10.1200/JCO.19.00108.
    1. Sun Y., Chen B., Li J., Peng L., Li S., Yu X., Li L. Real-World Analysis of the Efficacy and Safety of a Novel Irreversible HER2 Tyrosine Kinase Inhibitor Pyrotinib in Patients with HER2-Positive Metastatic Breast Cancer. Cancer Manag. Res. 2021;ume 13:7165–7174. doi: 10.2147/CMAR.S321428.
    1. Jiang Z., Li J., Chen J., Liu Y., Wang X., Nie J., Wang X., Hao C., Yin Y., Wang S., et al. Chinese Society of Clinical Oncology (CSCO) Diagnosis and Treatment Guidelines for Breast Cancer 2019. 2019th ed. People’s Medical Publishing House; Beijing, China: 2019.
    1. Jiang Z., Song E., Wang X., Wang H., Wang X., Wu J., Yin Y., Zhang Q., Chen J., Chen W., et al. Chinese Society of Clinical Oncology (CSCO) Diagnosis and Treatment Guidelines for Breast Cancer 2020. 2020th ed. People’s Medical Publishing House; Beijing, China: 2020.
    1. Zhang H., Zhang Y., Huang C., Wang J. Cost-effectiveness Analysis of Trastuzumab Emtansine as Second-line Therapy for HER2-Positive Breast Cancer in China. Clin. Drug Investig. 2021;41:569–577. doi: 10.1007/s40261-021-01035-4.
    1. Ministry of Human Resources and Social Security of the People’s Republic of China The National Drugs Catalogue of Basic Medical Insurance, Industrial Injury Insurance and Reproductive Insurance (2021 Edition) [(accessed on 31 July 2022)]; Available online: .
    1. Liu G.E. China Guidelines for Pharmacoeconomic Evaluations. 2020th ed. China Market Press; Beijing, China: 2020.
    1. National Bureau of Statistics of China Statistical Communiqué of the People’s Republic of China on National Economic and Social Development in 2021; 28 February 2022. [(accessed on 28 February 2022)]; Available online: .
    1. National Health Commission of the People’s Republic of China . Report on the Nutrition and Chronic Disease Status of Chinese Residents. 2020th ed. People’s Medical Publishing House; Beijing, China: 2020.
    1. Yang Q., Yu X., Zhang W. Health variations among breast-cancer patients from different disease states: Evidence from China. BMC Health Serv. Res. 2020;20:1013. doi: 10.1186/s12913-020-05872-5.
    1. Lloyd A., Nafees B., Narewska J., Dewilde S., Watkins J. Health state utilities for metastatic breast cancer. Br. J. Cancer. 2006;95:683–690. doi: 10.1038/sj.bjc.6603326.
    1. Annual Drug Review Report in 2018. [(accessed on 1 July 2019)]; Available online: .
    1. Oh D.-Y., Bang Y.-J. HER2-targeted therapies—A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2019;17:33–48. doi: 10.1038/s41571-019-0268-3.
    1. Parkinson B., Pearson S.-A., Viney R. Economic evaluations of trastuzumab in HER2-positive metastatic breast cancer: A systematic review and critique. Eur. J. Health Econ. 2013;15:93–112. doi: 10.1007/s10198-013-0459-2.
    1. Derakhshani A., Rezaei Z., Safarpour H., Sabri M., Mir A., Sanati M.A., Vahidian F., Moghadam A.G., Aghadoukht A., Hajiasgharzadeh K., et al. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J. Cell. Physiol. 2019;235:3142–3156. doi: 10.1002/jcp.29216.
    1. Escrivá-De-Romaní S., Arumí M., Bellet M., Saura C. HER2-positive breast cancer: Current and new therapeutic strategies. Breast. 2018;39:80–88. doi: 10.1016/j.breast.2018.03.006.
    1. Dai W.F., Beca J.M., Nagamuthu C., Liu N., de Oliveira C., Earle C.C., Trudeau M., Chan K.K.W. Cost-effectiveness Analysis of Pertuzumab with Trastuzumab in Patients with Metastatic Breast Cancer. JAMA Oncol. 2022;8:597–606. doi: 10.1001/jamaoncol.2021.8049.
    1. Younis T., Lee A., Coombes M.E., Bouganim N., Becker D., Revil C., Jhuti G.S. Economic evaluation of adjuvant trastuzumab emtansine in patients with HER2-positive early breast cancer and residual invasive disease after neoadjuvant taxane and trastuzumab–based treatment in Canada. Curr. Oncol. 2020;27:578–589. doi: 10.3747/co.27.6517.
    1. Delea T.E., Tappenden P., Sofrygin O., Browning D., Amonkar M.M., Karnon J., Walker M.D., Cameron D. Cost-effectiveness of lapatinib plus capecitabine in women with HER2+ metastatic breast cancer who have received prior therapy with trastuzumab. Eur. J. Health Econ. 2011;13:589–603. doi: 10.1007/s10198-011-0323-1.

Source: PubMed

3
Subscribe