Duodenoscope-Associated Infections beyond the Elevator Channel: Alternative Causes for Difficult Reprocessing

Gheorghe G Balan, Irina Rosca, Elena-Laura Ursu, Adrian Fifere, Cristian-Dragos Varganici, Florica Doroftei, Ioana-Andreea Turin-Moleavin, Vasile Sandru, Gabriel Constantinescu, Daniel Timofte, Gabriela Stefanescu, Anca Trifan, Catalin Victor Sfarti, Gheorghe G Balan, Irina Rosca, Elena-Laura Ursu, Adrian Fifere, Cristian-Dragos Varganici, Florica Doroftei, Ioana-Andreea Turin-Moleavin, Vasile Sandru, Gabriel Constantinescu, Daniel Timofte, Gabriela Stefanescu, Anca Trifan, Catalin Victor Sfarti

Abstract

Objectives: Duodenoscopes have been widely used for both diagnostic and therapeutic endoscopic retrograde cholangiopancreatography (ERCP) procedures, but recently, numerous outbreaks of multidrug-resistant organisms (MDRO) infections have been reported which has led to extensive research for their possible causes. Consequently, the aim of this study is to search for possible duodenoscope surface damages that could provide an alternative and plausible source of infections.

Materials and methods: In order to assess both outer and inner surfaces, a duodenoscope was dismantled and samples were taken from the outer resin polymer and from the air/water, elevator, and working (biopsy) channels that were characterized by FTIR, DSC, TGA, AFM, SEM techniques and the antimicrobial activity were tested.

Results: Alterations were noticed on both the coating and working channel polymers, with external alterations increasing progressively from the proximal sample to the distal sample near the tip of the scope. However, the results showed that the coating surface was still efficient against bacterial adhesion. Changes in surface texture and also morphological changes were shown.

Conclusions: The study describes the impact of routine procedural use and reprocessing cycles on the duodenoscope, showing that these may possibly make it susceptible to bacterial contamination and MDRO biofilm formation due to difficult reprocessing of the altered surfaces.

Keywords: carbapenem-resistant enterobacteriaceae; endoscopic retrograde cholangiopancreatography; nosocomial infections; reprocessing.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1
Figure 1
FTIR spectra of the studied samples 1–4.
Figure 2
Figure 2
DSC second scans of the studied samples.
Figure 3
Figure 3
(A) TGA and (B) DTG curves of the studied samples.
Figure 4
Figure 4
AFM topographic images for the duodenoscope samples: a—1st sample, b—2nd sample, c—3rd sample, d—4th sample.
Figure 5
Figure 5
AFM topographic images for the duodenoscope samples after incubation with Escherichia coli and Staphylococcus aureus: a—1st sample, b—2nd sample, c—3rd sample, d—4th sample.
Figure 6
Figure 6
SEM micrographs of duodenoscope samples. a—1st sample, b—2nd sample, c—3rd sample, d—4th sample.
Figure 7
Figure 7
SEM micrographs of elevator and channel samples: a—air/water channel; b—elevator channel; c—working channel; d,e,f—elevator recess side.

References

    1. Allen J.I., Allen M.O., Olson M.M., Gerding D.N., Shanholtzer C.J., Meier P.B., Vennes J.A., Silvis S.E. Pseudomonas infection of the biliary system resulting from use of a contaminated endoscope. Gastroenterology. 1987;92:759–763. doi: 10.1016/0016-5085(87)90029-1.
    1. Calderwood A.H., Day L.W., Muthusamy V.R., Collins J., Hambrick R.D., 3rd, Brock A.S., Guda N.M., Buscaglia J.M., Petersen B.T., Buttar N.S., et al. ASGE guideline for infection control during GI endoscopy. Gastrointest Endosc. 2018;87:1167–1179. doi: 10.1016/j.gie.2017.12.009.
    1. Rutala W.A., Weber D.J. ERCP scopes: What can we do to prevent infections? Infect. Control. Hosp. Epidemiol. 2015;36:643–648. doi: 10.1017/ice.2015.98.
    1. Epstein L., Hunter J.C., Arwady M.A., Tsai V., Stein L., Gribogiannis M., Frias M., Guh A.Y., Laufer A.S., Black S., et al. New Delhi metallo-β-lactamase–producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA. 2014;312:1447–1455. doi: 10.1001/jama.2014.12720.
    1. Verfaillie C.J., Bruno M.J., Voor in ’t Holt A.F., Buijs J.G., Poley J.W., Loeve A.J., Severin J.A., Abel L.F., Smit B.J., de Goeij I., et al. Withdrawal of a novel-design duodenoscope ends outbreak of a VIM-2-producing Pseudomonas aeruginosa. Endoscopy. 2015;47:493–502. doi: 10.1055/s-0034-1392080.
    1. Bălan G.G., Roşca I., Ursu E.L., Doroftei F., Bostănaru A.C., Hnatiuc E., Năstasă V., Şandru V., Ştefănescu G., Trifan A., et al. Plasma activated water—A new and effective alternative for duodenoscope reprocessing. Infect. Drug. Resist. 2018;11:727–733. doi: 10.2147/IDR.S159243.
    1. Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419.
    1. Boumitri C., Kumta N.A., Kahaleh M. Endoscopic retrograde cholangiopancreatography. In: Wallace M.B., Fockens P., Sung I.I.J., editors. Endoscopic retrograde cholangiopancreatography. Theime; Stuttgart, Germany: 2018. p. 115.
    1. Tokar J.L., Allen J.I., Kochman M.L. Getting to zero: Reducing the risk for duodenoscope-related infections. Ann. Intern. Med. 2015;163:873–874. doi: 10.7326/M15-1719.
    1. Alfa M.J., Singh H., Duerksen D.R., Schultz G., Reidy C., DeGagne P., Olson N. Improper positioning of the elevator lever of duodenoscopes may lead to sequestered bacteria that survive disinfection by automated endoscope reprocessors. Am. J. Infect. Control. 2018;46:73–75. doi: 10.1016/j.ajic.2017.07.021.
    1. Singh H., Duerksen D.R., Schultz G., Reidy C., DeGagne P., Olson N., Nugent Z., Bernard K.A., Alfa M.J. Impact of cleaning monitoring combined with channel purge storage on elimination of Escherichia coli and environmental bacteria from duodenoscopes. Gastrointest. Endosc. 2018;88:292–302. doi: 10.1016/j.gie.2018.02.018.
    1. Petersen B.T., Koch J., Ginsberg G.G. Infection using ERCP endoscopes. Gastroenterology. 2016;151:46–50. doi: 10.1053/j.gastro.2016.05.040.
    1. Lee D.H., Kim D.B., Kim H.Y., Baek H.S., Kwon S.Y., Lee M.H., Park J.C. Increasing potential risks of contamination from repetitive use of endoscope. Am. J. Infect. Control. 2015;43:e13–e17. doi: 10.1016/j.ajic.2015.01.017.
    1. Otter J.A., Vickery K., Walker J.T., deLancey Pulcini E., Stoodley P., Goldenberg S.D., Salkeld J.A., Chewins J., Yezli S., Edgeworth J.D. Surface-attached cells, biofilms and biocide susceptibility: Implications for hospital cleaning and disinfection. J. Hosp. Infect. 2015;89:16–27. doi: 10.1016/j.jhin.2014.09.008.
    1. Kovaleva J., Peters F.T., van der Mei H.C., Degener J.E. Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin. Microbiol. Rev. 2013;26:231–254. doi: 10.1128/CMR.00085-12.
    1. Chhaya R., Bhatwadekar K. Microbial bio-film an unpredictable trouble on medical devices. Int. J. Basic Appl. Med. Sci. 2015;5:83–93.
    1. Xue Y., Patel A., Sant V., Sant S. Semiquantitative FTIR analysis of the crosslinking density of poly(ester amide)-based thermoset elastomers. Macromol. Mater. Eng. 2016;301:296–305. doi: 10.1002/mame.201500190.
    1. Infrared Spectroscopy Absorbtion Table. [(accessed on 24 May 2018)]; Available online: .
    1. Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. John Wiley & Sons, Ltd.; Chichester, UK: 2000. pp. 10815–10837.
    1. Varganici C.D., Marangoci N., Rosu L., Barbu-Mic C., Rosu D., Pinteala M., Simionescu B.C. TGA/DTA–FTIR–MS coupling as analytical tool for confirming inclusion complexes occurrence in supramolecular host–guest architectures. J. Anal. Appl. Pyrolysis. 2015;115:132–142. doi: 10.1016/j.jaap.2015.07.006.
    1. JIS Z 2801: 2000 Antimicrobial products—Test for antimicrobial activity and efficacy. [(accessed on 24 May 2018)];2001 Japanese Industrial Standard. Available online: .
    1. Balan G., Pavel L., Sandu A.V., Stefanescu G., Trifan A.V. Preliminary study on erosion of polymer coatings of duodenoscopes. Materiale Plastice. 2016;53:791–795.
    1. Polivkova M., Valova M., Siegel J., Rimpelova S., Hubacek T., Lyutakov O., Svorcik V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Adv. 2015;5:73767–73774. doi: 10.1039/C5RA09297C.
    1. Polivkova M., Strublova V., Hubacek T., Rimpelova S., Svorcik V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072.
    1. Barakat M.T., Girotra M., Huang R.J., Banerjee S. Scoping the scope: Endoscopic evaluation of endoscope working channels with a new high-resolution inspection endoscope. Gastroint. Endosc. 2018;88:601–611. doi: 10.1016/j.gie.2018.01.018.
    1. Ofstead C.L., Wetzler H.P., Heymann O.L., Johnson E.A., Eiland J.E., Shaw M.J. Longitudinal assessment of reprocessing effectiveness for colonoscopes and gastroscopes: Results of visual inspections, biochemical markers, and microbial cultures. Am. J. Infect. Control. 2017;45:e26–e33. doi: 10.1016/j.ajic.2016.10.017.
    1. Ofstead C.L., Wetzler H.P., Eiland J.E., Heymann O.L., Held S.B., Shaw M.J. Assessing residual contamination and damage inside flexible endoscopes over time. Am. J. Infect. Control. 2016;44:1675–1677. doi: 10.1016/j.ajic.2016.06.029.
    1. Humphries R.M., McDonnell G. Superbugs on duodenoscopes: The challenge of cleaning and disinfection of reusable devices. J. Clin. Microbiol. 2015;53:3118–3125. doi: 10.1128/JCM.01394-15.
    1. Duodenoscope Surveillance Sampling and Culturing Protocols developed by the FDA/CDC/ASM Working Group on Duodenoscope Culturing. [(accessed on 2 March 2018)]; Available online: .
    1. Pajkos A., Vickery K., Cossart Y. Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination? J. Hosp. Infect. 2004;58:224–229. doi: 10.1016/j.jhin.2004.06.023.
    1. Higa J.T., Choe J., Tombs D., Gluck M., Ross A.S. Optimizing duodenoscope reprocessing: Rigorous assessment of a culture and quarantine protocol. Gastrointest. Endosc. 2018;88:223–229. doi: 10.1016/j.gie.2018.02.015.
    1. Wang P., Xu T., Ngamruengphong S., Makary M.A., Kalloo A., Hutfless S. Rates of infection after colonoscopy and esophagogastroduodenoscopy in ambulatory surgery centres in the USA. Gut. 2018;67:1626–1636. doi: 10.1136/gutjnl-2017-315308.
    1. Center for devices and radiological health Division of epidemiology. Protecting & promoting public health through device surveillance and research. 522 Postmarket Surveillance (PS) Studies Program. [(accessed on 30 June 2018)]; Available online: .

Source: PubMed

3
Subscribe