Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women

Billy Sperlich, Birgit Wallmann-Sperlich, Christoph Zinner, Valerie Von Stauffenberg, Helena Losert, Hans-Christer Holmberg, Billy Sperlich, Birgit Wallmann-Sperlich, Christoph Zinner, Valerie Von Stauffenberg, Helena Losert, Hans-Christer Holmberg

Abstract

The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk-1) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p < 0.05) by CircuitHIIT, whereas Circuitcombined improved perception of general health more (p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, CircuitHIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuitcombined results in better perception of general health.

Keywords: aerobic fitness; body composition; female; functional training; interval training; power training.

Figures

Figure 1
Figure 1
The timeline and main outcome variables of this study.

References

    1. Barnes K. R., Kilding A. E. (2015). Strategies to improve running economy. Sports Med. 45, 37–56. 10.1007/s40279-014-0246-y
    1. Bassett D. R., Jr., Howley E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32, 70–84. 10.1097/00005768-200001000-00012
    1. Batterham A. M., Hopkins W. G. (2006). Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 1, 50–57. 10.1123/ijspp.1.1.50
    1. Beckham S. G., Earnest C. P. (2000). Metabolic cost of free weight circuit weight training. J. Sports Med. Phys. Fitness 40, 118–125. Available online at:
    1. Borg G. (1970). Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2, 92–98.
    1. Bouchard C., Blair S. N., Katzmarzyk P. T. (2015). Less sitting, more physical activity, or higher fitness? Mayo Clin. Proc. 90, 1533–1540. 10.1016/j.mayocp.2015.08.005
    1. Buckley S., Knapp K., Lackie A., Lewry C., Horvey K., Benko C., et al. . (2015). Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 40, 1157–1162. 10.1139/apnm-2015-0238
    1. Bullinger M., Kirchberger I., Ware J. (1995). Der deutsche SF-36 Health Survey Übersetzung und psychometrische Testung eines krankheitsübergreifenden Instruments zur Erfassung der gesundheitsbezogenen Lebensqualität. Zeitschrift für Gesundheitswissenschaften. J. Public Health 3, 21–36. 10.1007/BF02959944
    1. Chwalbinska-Moneta J., Kaciuba-Uscilko H., Krysztofiak H., Ziemba A., Krzeminski K., Kruk B., et al. . (1998). Relationship between EMG blood lactate, and plasma catecholamine thresholds during graded exercise in men. J. Physiol. Pharmacol. 49, 433–441.
    1. Convertino V. A., Brock P. J., Keil L. C., Bernauer E. M., Greenleaf J. E. (1980). Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 48, 665–669.
    1. Coyle E. F. (1999). Physiological determinants of endurance exercise performance. J. Sci. Med. Sport 2, 181–189. 10.1016/S1440-2440(99)80172-8
    1. Del Vecchio F. B., Gentil P., Coswig V. S., Fukuda D. H. (2015). Commentary: why sprint interval training is inappropriate for a largely sedentary population. Front. Psychol. 6:1359. 10.3389/fpsyg.2015.01359
    1. Dhaliwal S. S., Welborn T. A. (2009). Measurement error and ethnic comparisons of measures of abdominal obesity. Prev. Med. 49, 148–152. 10.1016/j.ypmed.2009.06.023
    1. Elliott A. D., Rajopadhyaya K., Bentley D. J., Beltrame J. F., Aromataris E. C. (2015). Interval training versus continuous exercise in patients with coronary artery disease: a meta-analysis. Heart Lung Circ. 24, 149–157. 10.1016/j.hlc.2014.09.001
    1. Esteve-Lanao J., Foster C., Seiler S., Lucia A. (2007). Impact of training intensity distribution on performance in endurance athletes. J. Strength Cond. Res. 21, 943–949. 10.1519/00124278-200708000-00048
    1. Gettman L. R., Ward P., Hagan R. D. (1982). A comparison of combined running and weight training with circuit weight training. Med. Sci. Sports Exerc. 14, 229–234. 10.1249/00005768-198203000-00014
    1. Gielen S., Laughlin M. H., O'conner C., Duncker D. J. (2015). Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations. Prog. Cardiovasc. Dis. 57, 347–355. 10.1016/j.pcad.2014.10.001
    1. Godin G., Desharnais R., Valois P., Lepage L., Jobin J., Bradet R. (1994). Differences in perceived barriers to exercise between high and low intenders: observations among different populations. Am. J. Health Promot. 8, 279–385. 10.4278/0890-1171-8.4.279
    1. Goodman J. M., Liu P. P., Green H. J. (2005). Left ventricular adaptations following short-term endurance training. J. Appl. Physiol. 98, 454–460. 10.1152/japplphysiol.00258.2004
    1. Graham M. J., Lucas S. J., Francois M. E., Stavrianeas S., Parr E. B., Thomas K. N., et al. . (2016). Low-volume intense exercise elicits post-exercise hypotension and subsequent hypervolemia, irrespective of which limbs are exercised. Front. Physiol. 7:199. 10.3389/fphys.2016.00199
    1. Green H. J., Jones L. L., Hughson R. L., Painter D. C., Farrance B. W. (1987). Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med. Sci. Sports Exerc. 19, 202–206. 10.1249/00005768-198706000-00003
    1. Green H. J., Jones L. L., Painter D. C. (1990). Effects of short-term training on cardiac function during prolonged exercise. Med. Sci. Sports Exerc. 22, 488–493. 10.1249/00005768-199008000-00012
    1. Hardcastle S. J., Ray H., Beale L., Hagger M. S. (2014). Why sprint interval training is inappropriate for a largely sedentary population. Front. Psychol. 5:1505. 10.3389/fpsyg.2014.01505
    1. Hickson R. C., Hagberg J. M., Ehsani A. A., Holloszy J. O. (1981). Time course of the adaptive responses of aerobic power and heart rate to training. Med. Sci. Sports Exerc. 13, 17–20. 10.1249/00005768-198101000-00012
    1. Ho S. S., Dhaliwal S. S., Hills A. P., Pal S. (2012a). The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health 12:704. 10.1186/1471-2458-12-704
    1. Ho S. S., Radavelli-Bagatini S., Dhaliwal S. S., Hills A. P., Pal S. (2012b). Resistance, aerobic, and combination training on vascular function in overweight and obese adults. J. Clin. Hypertens. 14, 848–854. 10.1111/j.1751-7176.2012.00700.x
    1. Hopkins W. G. (2002). Probabilitites of clinical or practical significance. Sportscience 6 Available online at:
    1. Hoppeler H., Weibel E. R. (2000). Structural and functional limits for oxygen supply to muscle. Acta Physiol. Scand. 168, 445–456. 10.1046/j.1365-201x.2000.00696.x
    1. Hurley B. F., Hagberg J. M., Goldberg A. P., Seals D. R., Ehsani A. A., Brennan R. E., et al. (1988). Resistive training can reduce coronary risk factors without altering VO2max or percent body fat. Med. Sci. Sports Exerc. 20, 150–154. 10.1249/00005768-198820020-00008
    1. Kessler H. S., Sisson S. B., Short K. R. (2012). The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 42, 489–509. 10.2165/11630910-000000000-00000
    1. Kuipers H., Rietjens G., Verstappen F., Schoenmakers H., Hofman G. (2003). Effects of stage duration in incremental running tests on physiological variables. Int. J. Sports Med. 24, 486–491. 10.1055/s-2003-42020
    1. Levinger I., Goodman C., Hare D. L., Jerums G., Selig S. (2007). The effect of resistance training on functional capacity and quality of life in individuals with high and low numbers of metabolic risk factors. Diabetes Care 30, 2205–2210. 10.2337/dc07-0841
    1. Little J. P., Francois M. E. (2014). High-intensity interval training for improving postprandial hyperglycemia. Res. Q. Exerc. Sport 85, 451–456. 10.1080/02701367.2014.963474
    1. McRae G., Payne A., Zelt J. G., Scribbans T. D., Jung M. E., Little J. P., et al. . (2012). Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl. Physiol. Nutr. Metab. 37, 1124–1131. 10.1139/h2012-093
    1. Neves L. M., Fortaleza A. C., Rossi F. E., Diniz T. A., Codogno J. S., Gobbo L. A., et al. . (2017). Functional training reduces body fat and improves functional fitness and cholesterol levels in postmenopausal women: a randomized clinical trial. J. Sports Med. Phys. Fitness 57, 448–456. 10.23736/S0022-4707.17.06062-5
    1. Poehlman E. T., Dvorak R. V., Denino W. F., Brochu M., Ades P. A. (2000). Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. J. Clin. Endocrinol. Metab. 85, 2463–2468. 10.1210/jc.85.7.2463
    1. Schmitt J., Lindner N., Reuss-Borst M., Holmberg H.-C., Sperlich B. (2016). A 3-week multimodal intervention involving high-intensity interval training in female cancer survivors: a randomized controlled trial. Physiol. Rep. 4:e12693. 10.14814/phy2.12693
    1. Schumann M., Küüsmaa M., Newton R. U., Sirparanta A. I., Syväoja H., Hääkkinen A., et al. . (2014). Fitness and lean mass increases during combined training independent of loading order. Med. Sci. Sports Exerc. 46, 1758–1768. 10.1249/MSS.0000000000000303
    1. Shaw B. S., Shaw I. (2009). Compatibility of concurrent aerobic and resistance training on maximal aerobic capacity in sedentary males. Cardiovasc. J. Afr. 20, 104–106. Available online at:
    1. Sillanpää E., Häkkinen K., Holviala J., Häkkinen A. (2012). Combined strength and endurance training improves health-related quality of life in healthy middle-aged and older adults. Int. J. Sports Med. 33, 981–986. 10.1055/s-0032-1311589
    1. Sillanpää E., Laaksonen D. E., Häkkinen A., Karavirta L., Jensen B., Kraemer W. J., et al. . (2009). Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur. J. Appl. Physiol. 106, 285–296. 10.1007/s00421-009-1013-x
    1. Stöggl T. L., Sperlich B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 6:295. 10.3389/fphys.2015.00295
    1. Stoggl T., Sperlich B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front. Physiol. 5:33 10.3389/fphys.2014.00033
    1. Weisenthal B. M., Beck C. A., Maloney M. D., Dehaven K. E., Giordano B. D. (2014). Injury rate and patterns among crossfit athletes. Orthop. J. Sports Med. 2:2325967114531177. 10.1177/2325967114531177
    1. Zinner C., Sperlich B., Born D. P., Michels G. (2016). Effects of combined high intensity arm and leg training on performance and cardio-respiratory measures. J. Sports Med. Phys. Fitness [Epub ahead of print].

Source: PubMed

3
Subscribe