Greater glucagon-like peptide-1 responses to oral glucose are associated with lower central and peripheral blood pressures

Julie R Lundgren, Kristine Færch, Daniel R Witte, Anna E Jonsson, Oluf Pedersen, Torben Hansen, Torsten Lauritzen, Jens J Holst, Dorte Vistisen, Marit E Jørgensen, Signe S Torekov, Nanna B Johansen, Julie R Lundgren, Kristine Færch, Daniel R Witte, Anna E Jonsson, Oluf Pedersen, Torben Hansen, Torsten Lauritzen, Jens J Holst, Dorte Vistisen, Marit E Jørgensen, Signe S Torekov, Nanna B Johansen

Abstract

Background and aim: Cardiovascular diseases (CVDs) are globally the leading cause of death and hypertension is a significant risk factor. Treatment with glucagon-like peptide-1 (GLP-1) receptor agonists has been associated with decreases in blood pressure and CVD risk. Our aim was to investigate the association between endogenous GLP-1 responses to oral glucose and peripheral and central haemodynamic measures in a population at risk of diabetes and CVD.

Methods: This cross-sectional study included 837 Danish individuals from the ADDITION-PRO cohort (52% men, median (interquartile range) age 65.5 (59.8 to 70.7) years, BMI 26.1 (23.4 to 28.5) kg/m2, without antihypertensive treatment and known diabetes). All participants received an oral glucose tolerance test with measurements of GLP-1 at 0, 30 and 120 min. Aortic stiffness was assessed by pulse wave velocity (PWV). The associations between GLP-1 response and central and brachial blood pressure (BP) and PWV were assessed in linear regression models adjusting for age and sex.

Results: A greater GLP-1 response was associated with lower central systolic and diastolic BP of - 1.17 mmHg (95% confidence interval (CI) - 2.07 to - 0.27 mmHg, P = 0.011) and - 0.74 mmHg (95% CI - 1.29 to - 0.18 mmHg, P = 0.009), respectively, as well as lower brachial systolic and diastolic BP of - 1.27 mmHg (95% CI - 2.20 to - 0.33 mmHg, P = 0.008) and - 1.00 (95% CI - 1.56 to - 0.44 mmHg, P = 0.001), respectively. PWV was not associated with GLP-1 release (P = 0.3). Individuals with the greatest quartile of GLP-1 response had clinically relevant lower BP measures compared to individuals with the lowest quartile of GLP-1 response (central systolic BP: - 4.94 (95% CI - 8.56 to - 1.31) mmHg, central diastolic BP: - 3.05 (95% CI - 5.29 to - 0.80) mmHg, brachial systolic BP: - 5.18 (95% CI - 8.94 to - 1.42) mmHg, and brachial diastolic BP: - 2.96 (95% CI - 5.26 to - 0.67) mmHg).

Conclusion: Greater glucose-stimulated GLP-1 responses were associated with clinically relevant lower central and peripheral blood pressures, consistent with beneficial effects on the cardiovascular system and reduced risk of CVD and mortality. Trial registration ClinicalTrials.gov Identifier: NCT00237549. Retrospectively registered 10 October 2005.

Keywords: Aortic stiffness; Cardiovascular disease; Central blood pressure; GLP-1; Peripheral blood pressure.

Conflict of interest statement

TL holds shares in Novo Nordisk. All other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Oral glucose tolerance test (OGTT) responses of glucagon-like peptide-1 (GLP-1), glucose and insulin. Median is shown by a square and brackets show interquartile range
Fig. 2
Fig. 2
Estimated difference in blood pressure measures in 837 individuals for a doubling in incremental AUC (iAUC) of GLP-1. HOMA-IR homeostatic model assessment for insulin resistance, BMI body mass index

References

    1. World Health Organization. Cardiovascular diseases (CVDs). 2017. ). Accessed 9 Sept 2019.
    1. World Health Organization. Hypertension. 2019. . Accessed 5 Sept 2019.
    1. Zhou D, Xi B, Zhao M, Wang L, Veeranki SP. Uncontrolled hypertension increases risk of all-cause and cardiovascular disease mortality in US adults: the NHANES III Linked Mortality Study. Sci Rep. 2018;8(1):9418.
    1. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322.
    1. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844.
    1. Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1):e001986.
    1. McIntosh CHS, Widenmaier S, Kim SJ. Vitamins and hormones. Waltham: Academic Press; 2010. Pleiotropic actions of the incretin hormones; pp. 21–79.
    1. Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988;123(4):2009–2013.
    1. Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993;38(4):665–673.
    1. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515–520.
    1. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–1143.
    1. Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009;201(1):59–66.
    1. Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology. 2003;144(6):2242–2252.
    1. Grieve DJ, Cassidy RS, Green BD. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycaemic control? Br J Pharmacol. 2009;157(8):1340–1351.
    1. Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Aylor KW, et al. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin Sci (Lond) 2014;127(3):163–170.
    1. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–749.
    1. Johansen NB, Hansen ALS, Jensen TM, Philipsen A, Rasmussen SS, Jørgensen ME, et al. Protocol for ADDITION-PRO: a longitudinal cohort study of the cardiovascular experience of individuals at high risk for diabetes recruited from Danish primary care. BMC Public Health. 2012;12:1078.
    1. Færch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, et al. GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes. 2015;64(7):2513–2525.
    1. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138(1):159–166.
    1. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–390.
    1. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17(11):1481–1489.
    1. Lee Y-S, Jun H-S. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediat Inflamm. 2016;2016:3094642.
    1. Wang F, Song X, Zhou L, Liang G, Huang F, Jiang G, et al. The downregulation of sweet taste receptor signaling in enteroendocrine L-cells mediates 3-deoxyglucosone-induced attenuation of high glucose-stimulated GLP-1 secretion. Arch Physiol Biochem. 2018;124(5):430–435.
    1. Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008;57(5):1340–1348.
    1. Iepsen EW, Lundgren J, Holst JJ, Madsbad S, Torekov SS. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3-36. Eur J Endocrinol. 2016;174(6):775–784.
    1. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006.
    1. Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension. Endocrinol Metab Clin North Am. 2014;43(1):103–122.
    1. Iepsen EW, Lundgren J, Dirksen C, Jensen J-EB, Pedersen O, Hansen T, Madsbad S, Holst JJ, Torekov SS. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int J Obes. 2015;39(5):834–841.
    1. Torekov SS, Kipnes MS, Harley RE, Holst JJ, Ehlers MR. Dose response of subcutaneous GLP-1 infusion in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(7):639–643.
    1. Torekov SS, Holst JJ, Ehlers MR. Dose response of continuous subcutaneous infusion of recombinant glucagon-like peptide-1 in combination with metformin and sulphonylurea over 12 weeks in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(5):451–456.
    1. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–967.
    1. Heerspink HJL, Ninomiya T, Zoungas S, de Zeeuw D, Grobbee DE, Jardine MJ, et al. Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials. Lancet (London, England). 2009;373(9668):1009–1015.
    1. Yuasa S, Sato K, Furuki T, Minamizawa K, Sakai H, Numata Y, et al. Primary care-based investigation of the effect of sitagliptin on blood pressure in hypertensive patients with type 2 diabetes. J Clin Med Res. 2017;9(3):188–192.
    1. Foley JE, Evans M, Schweizer A. Blood pressure and fasting lipid changes after 24 weeks’ treatment with vildagliptin: a pooled analysis in > 2,000 previously drug-naïve patients with type 2 diabetes mellitus. Vasc Health Risk Manag. 2016;12:337–340.
    1. Mistry GC, Maes AL, Lasseter KC, Davies MJ, Gottesdiener KM, Wagner JA, et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol. 2008;48(5):592–598.
    1. Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–536.
    1. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–130.
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–1326.
    1. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–1335.
    1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–242.
    1. Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Metab. 2004;287(6):E1209–E1215.
    1. Nyström T, Gonon AT, Sjöholm A, Pernow J. Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005;125(1–3):173–177.
    1. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23(4):222–231.
    1. Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016;18(2):16.
    1. Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418–1423.
    1. Lambadiari V, Pavlidis G, Kousathana F, Varoudi M, Vlastos D, Maratou E, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):8.
    1. Ecobici M, Stoicescu C. Arterial stiffness and hypertension—which comes first? Maedica (Buchar). 2017;12(3):184–190.
    1. Ishikawa S, Shimano M, Watarai M, Koyasu M, Uchikawa T, Ishii H, et al. Impact of sitagliptin on carotid intima-media thickness in patients with coronary artery disease and impaired glucose tolerance or mild diabetes mellitus. Am J Cardiol. 2014;114(3):384–388.
    1. Kishimoto S, Kinoshita Y, Matsumoto T, Maruhashi T, Kajikawa M, Matsui S, et al. Effects of the dipeptidyl peptidase 4 inhibitor alogliptin on blood pressure in hypertensive patients with type 2 diabetes mellitus. Am J Hypertens. 2019;32(7):695–702.
    1. Ramírez E, Picatoste B, González-Bris A, Oteo M, Cruz F, Caro-Vadillo A, et al. Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: role of GLP-1 isoforms in Glut4 receptor trafficking. Cardiovasc Diabetol. 2018;17(1):12.
    1. Zhang X, Zhang Z, Yang Y, Suo Y, Liu R, Qiu J, et al. Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovasc Diabetol. 2018;17(1):160.
    1. Ferreira JP, Girerd N, Bozec E, Machu JL, Boivin J-M, London GM, et al. Intima-media thickness is linearly and continuously associated with systolic blood pressure in a population-based cohort (STANISLAS cohort study) J Am Heart Assoc. 2016;5(6):e003529.
    1. Lalande S, Johnson DB. Diastolic dysfunction: a link between hypertension and heart failure. Drugs Today. 2008;44(7):503.
    1. Kushima H, Mori Y, Koshibu M, Hiromura M, Kohashi K, Terasaki M, et al. The role of endothelial nitric oxide in the anti-restenotic effects of liraglutide in a mouse model of restenosis. Cardiovasc Diabetol. 2017;16(1):122.
    1. Wong BW, Marsch E, Treps L, Baes M, Carmeliet P. Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 2017;36(15):2187–2203.
    1. Chen Y, Zhang X, He J, Xie Y, Yang Y. Delayed administration of the glucagon-like peptide 1 analog liraglutide promoting angiogenesis after focal cerebral ischemia in mice. J Stroke Cerebrovasc Dis. 2018;27(5):1318–1325.
    1. Yoshihara M, Akasaka H, Ohnishi H, Miki T, Furukawa T, Yuda S, et al. Glucagon-like peptide-1 secretory function as an independent determinant of blood pressure: analysis in the Tanno-Sobetsu study. PLoS ONE. 2013;8(7):e67578.
    1. Piotrowski K, Becker M, Zugwurst J, Biller-Friedmann I, Spoettl G, Greif M, et al. Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol. 2013;12(1):117.
    1. Bak MJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK, Vilsbøll T, Jørgensen NB, et al. Specificity and sensitivity of commercially available assays for glucagon-like peptide-1 (GLP-1): implications for GLP-1 measurements in clinical studies. Diabetes Obes Metab. 2014;16(11):1155–1164.
    1. Orskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994;43(4):535–539.
    1. Clarke SJ, Pettit S, Giblett JP, Zhao T, Kydd AC, Albrechtsen NJW, et al. Effects of acute GLP-1 infusion on pulmonary and systemic hemodynamics in patients with heart failure: a pilot study. Clin Ther. 2019;41(1):118–127.
    1. Smits MM, Tonneijck L, Muskiet MHA, Hoekstra T, Kramer MHH, Diamant M, et al. Heart rate acceleration with GLP-1 receptor agonists in type 2 diabetes patients: an acute and 12-week randomised, double-blind, placebo-controlled trial. Eur J Endocrinol. 2017;176(1):77–86.
    1. Monnard CR, Fellay B, Scerri I, Grasser EK. Substantial inter-subject variability in blood pressure responses to glucose in a healthy, non-obese population. Front Physiol. 2017;8:507.
    1. Grasser EK, Dulloo A, Montani J-P. Cardiovascular responses to the ingestion of sugary drinks using a randomised cross-over study design: does glucose attenuate the blood pressure-elevating effect of fructose? Br J Nutr. 2014;112(2):183–192.
    1. Brown CM, Dulloo AG, Yepuri G, Montani J-P. Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Integr Comp Physiol. 2008;294(3):R730–R737.

Source: PubMed

3
Subscribe