Remote ischemic conditioning improves cognition in patients with subcortical ischemic vascular dementia

Zhangyuan Liao, Yali Bu, Meijie Li, Ranran Han, Nan Zhang, Junwei Hao, Wei Jiang, Zhangyuan Liao, Yali Bu, Meijie Li, Ranran Han, Nan Zhang, Junwei Hao, Wei Jiang

Abstract

Background: Subcortical ischemic vascular dementia (SIVD) is very common among the older people, but has no approved treatment. Preclinical trials show that remote ischemic conditioning (RIC) reduces recurrence of ischemic stroke. We hypothesize that RIC may also be an effective therapy for patients with SIVD.

Methods: Thirty-seven consecutive SIVD cases were enrolled in this randomized control study. Eighteen RIC patients underwent five brief cycles of conditioning (bilateral upper limb compression at 200 mmHg) followed by reperfusion twice daily over 6 consecutive months. Nineteen control patients underwent the same process, but at a pressure of 60 mmHg which caused no restriction on the blood flow of the upper limb. The primary outcome measures were changes in neuropsychological assessments. The secondary outcomes included the changes in high-sensitive C-reactive protein (hs-CRP) concentration, white matter lesion volume (WMLV), diffusion tension imaging (DTI) metrics of white matter. All data were collected at baseline and follow-up.

Results: A significant treatment difference favoring RIC at 6 months was observed on performance of Hopkins Verbal Learning Test-Revised (HVLT-R), Controlled Oral Word Association Test (COWAT), Trail Making Test A and B (TMT-A & TMT-B), and Judgment of Line Orientation (JLO) (p < 0.05). The control group did not show much improvement after the treatment, and only with a slight change in HVLT-R and TMT-R (p < 0.05). Covariance analysis of efficacy between the two groups suggested that RIC patients performed better on JLO than control patients at the 6-month follow-up (RIC 23.10 vs. control 18.56; p = 0.013). Although DTI metrics were comparable, Hs-CRP levels and WMLV in RIC patients showed a declining trend.

Conclusions: Over the 6-month treatment period, we found that RIC was safe and effective for improving cognitive function in SIVD patients.

Trial registration: Clinical Trial Registration ( http://www.clinicaltrials.gov ), Unique identifier: NCT03022149; Retrospectively registered; Date of registration: January 16, 2017.

Keywords: Cerebral small vessel disease; Cognition; Diffusion tension imaging; Ischemic conditioning; Subcortical ischemic vascular dementia; White matter lesion.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study cohort allocation

References

    1. O'Brien JT, Thomas A. Vascular dementia. Lancet. 2015;386(10004):1698–1706.
    1. Roman GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular dementia. Lancet Neurol. 2002;1(7):426–436.
    1. Zhou G, Li MH, Tudor G, Lu HT, Kadirvel R, Kallmes D. Remote ischemic conditioning in cerebral diseases and Neurointerventional procedures: recent research Progress. Front Neurol. 2018;9:339.
    1. Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A, Gk R. Cerebral ischemic preconditioning: the road so far. Mol Neurobiol. 2015.
    1. Chen G, Thakkar M, Robinson C, Doré S. Limb remote ischemic conditioning: mechanisms, anesthetics, and the potential for expanding therapeutic options. Front Neurol. 2018;9:40.
    1. Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, Li G, Ren C, Luo Y, Ling F, Jia J, Hua Y, Wang X, Ding Y, Lo EH, Ji X. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):1853–1861.
    1. Malojcic B, Giannakopoulos P, Sorond FA, Azevedo E, Diomedi M, Oblak JP, Carraro N, Boban M, Olah L, Schreiber SJ, Pavlovic A, Garami Z, Bornstein NM, Rosengarten B. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer's disease. BMC Med. 2017;15(1):27.
    1. Zhang CE, Wong SM, Uiterwijk R, Staals J, Backes WH, Hoff EI, Schreuder T, Jeukens CR, Jansen JF, van Oostenbrugge RJ. Intravoxel incoherent motion imaging in small vessel disease: microstructural integrity and microvascular perfusion related to cognition. Stroke. 2017;48(3):658–663.
    1. Vilar-Bergua A, Riba-Llena I, Nafria C, Bustamante A, Llombart V, Delgado P, Montaner J. Blood and CSF biomarkers in brain subcortical ischemic vascular disease: involved pathways and clinical applicability. J Cereb Blood Flow Metab. 2016;36(1):55–71.
    1. Dong C, Nabizadeh N, Caunca M, Cheung YK, Rundek T, Elkind MS, DeCarli C, Sacco RL, Stern Y, Wright CB. Cognitive correlates of white matter lesion load and brain atrophy: the northern Manhattan study. Neurology. 2015;85(5):441–449.
    1. Jia J, Wei C, Liang J, Zhou A, Zuo X, Song H, Wu L, Chen X, Chen S, Zhang J, Wu J, Wang K, Chu L, Peng D, Lv P, Guo H, Niu X, Chen Y, Dong W, Han X, Fang B, Peng M, Li D, Jia Q, Huang L. The effects of DL-3-n-butylphthalide in patients with vascular cognitive impairment without dementia caused by subcortical ischemic small vessel disease: a multicentre, randomized, double-blind, placebo-controlled trial. Alzheimers Dement. 2016;12(2):89–99.
    1. Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, Roman GC, Chui H, Desmond DW. Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl. 2000;59:23–30.
    1. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–356.
    1. Shi J, Tian J, Wei M, Miao Y, Wang Y. The utility of the Hopkins verbal learning test (Chinese version) for screening dementia and mild cognitive impairment in a Chinese population. BMC Neurol. 2012;12:136.
    1. Zhang N, Li YJ, Fu Y, Shao JH, Luo LL, Yang L, Shi FD, Liu Y. Cognitive impairment in Chinese neuromyelitis optica. Mult Scler. 2015;21(14):1839–1846.
    1. Rossini ED, Karl MA. The trail making test a and B: a technical note on structural nonequivalence. Percept Mot Skills. 1994;78(2):625–626.
    1. Smith A. Symbol digit modalities test: manual. Los Angeles, CA: Western Psychological Services; 1982.
    1. Benton AL, Sivan AB, Hamsher K. Contributions to neuropsychological assessment. New York, NY: Oxford University Press; 1994.
    1. Zhao W, Meng R, Ma C, Hou B, Jiao L, Zhu F, Wu W, Shi J, Duan Y, Zhang R, Zhang J, Sun Y, Zhang H, Ling F, Wang Y, Feng W, Ding Y, Ovbiagele B, Ji X. Safety and efficacy of remote ischemic preconditioning in patients with severe carotid artery stenosis prior to carotid artery stenting: a proof-of-concept, Randomized Controlled Trial. Circulation. 2017;135(14):1325–1335.
    1. MacIntosh BJ, Swardfager W, Robertson AD, Tchistiakova E, Saleem M, Oh PI, Herrmann N, Stefanovic B, Lanctôt KL. Regional cerebral arterial transit time hemodynamics correlate with vascular risk factors and cognitive function in men with coronary artery disease. AJNR Am J Neuroradiol. 2015;36(2):295–301.
    1. Ter TA, van Leijsen EMC, Wiegertjes K, CJM K, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018;14(7):387–398.
    1. Marshall RS. Effects of altered cerebral hemodynamics on cognitive function. J Alzheimers Dis. 2012;32(3):633–642.
    1. Jiménez-Balado J, Riba-Llena I, Abril O, Garde E, Penalba A, Ostos E, Maisterra O, Montaner J, Noviembre M, Mundet X, Ventura O, Pizarro J, Delgado P. Cognitive impact of cerebral small vessel disease changes in patients with hypertension. Hypertension. 2019;73(2):342–349.
    1. Wang Y, Meng R, Song H, Liu G, Hua Y, Cui D, Zheng L, Feng W, Liebeskind DS, Fisher M, Ji X. Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke. 2017;48(11):3064–3072.
    1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.
    1. Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia aging study. Ann Neurol. 2002;52(2):168–174.
    1. Uiterwijk R, Staals J, Huijts M, de Leeuw PW, Kroon AA, van Oostenbrugge RJ. MRI progression of cerebral small vessel disease and cognitive decline in patients with hypertension. J Hypertens. 2017;35(6):1263–1270.
    1. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–448.
    1. Tuladhar AM, van Uden IW, Rutten-Jacobs LC, Lawrence A, van der Holst H, van Norden A, de Laat K, van Dijk E, Claassen JA, Kessels RP, Markus HS, Norris DG, de Leeuw FE. Structural network efficiency predicts conversion to dementia. Neurology. 2016;86(12):1112–1119.
    1. van der Holst HM, van Uden IW, Tuladhar AM, de Laat KF, van Norden AG, Norris DG, van Dijk EJ, Rutten-Jacobs LC, de Leeuw FE. Factors associated with 8-year mortality in older patients with cerebral small vessel disease: the Radboud University Nijmegen diffusion tensor and magnetic resonance cohort (RUN DMC) study. JAMA Neurol. 2016;73(4):402–409.
    1. Tuladhar AM, van Norden AG, de Laat KF, Zwiers MP, van Dijk EJ, Norris DG, de Leeuw FE. White matter integrity in small vessel disease is related to cognition. Neuroimage Clin. 2015;7:518–524.
    1. Mi T, Yu F, Ji X, Sun Y, Qu D. The interventional effect of remote ischemic preconditioning on cerebral small vessel disease: a pilot randomized clinical trial. Eur Neurol. 2016;76(1–2):28–34.

Source: PubMed

3
Subscribe