Rehabilitation of Upper Extremity Nerve Injuries Using Surface EMG Biofeedback: Protocols for Clinical Application

Agnes Sturma, Laura A Hruby, Cosima Prahm, Johannes A Mayer, Oskar C Aszmann, Agnes Sturma, Laura A Hruby, Cosima Prahm, Johannes A Mayer, Oskar C Aszmann

Abstract

Motor recovery following nerve transfer surgery depends on the successful re-innervation of the new target muscle by regenerating axons. Cortical plasticity and motor relearning also play a major role during functional recovery. Successful neuromuscular rehabilitation requires detailed afferent feedback. Surface electromyographic (sEMG) biofeedback has been widely used in the rehabilitation of stroke, however, has not been described for the rehabilitation of peripheral nerve injuries. The aim of this paper was to present structured rehabilitation protocols in two different patient groups with upper extremity nerve injuries using sEMG biofeedback. The principles of sEMG biofeedback were explained and its application in a rehabilitation setting was described. Patient group 1 included nerve injury patients who received nerve transfers to restore biological upper limb function (n = 5) while group 2 comprised patients where biological reconstruction was deemed impossible and hand function was restored by prosthetic hand replacement, a concept today known as bionic reconstruction (n = 6). The rehabilitation protocol for group 1 included guided sEMG training to facilitate initial movements, to increase awareness of the new target muscle, and later, to facilitate separation of muscular activities. In patient group 2 sEMG biofeedback helped identify EMG activity in biologically "functionless" limbs and improved separation of EMG signals upon training. Later, these sEMG signals translated into prosthetic function. Feasibility of the rehabilitation protocols for the two different patient populations was illustrated. Functional outcome measures were assessed with standardized upper extremity outcome measures [British Medical Research Council (BMRC) scale for group 1 and Action Research Arm Test (ARAT) for group 2] showing significant improvements in motor function after sEMG training. Before actual movements were possible, sEMG biofeedback could be used. Patients reported that this visualization of muscle activity helped them to stay motivated during rehabilitation and facilitated their understanding of the re-innervation process. sEMG biofeedback may help in the cognitively demanding process of establishing new motor patterns. After standard nerve transfers individually tailored sEMG biofeedback can facilitate early sensorimotor re-education by providing visual cues at a stage when muscle activation cannot be detected otherwise.

Keywords: nerve reconstruction; nerve transfer; neuro-rehabilitation; prosthetic rehabilitation; surface electromyography; upper extremity rehabilitation.

Figures

FIGURE 1
FIGURE 1
Training with the MyoBoy (Ottobock, Duderstadt, Germany) with one dry electrode placed on the extensor compartment of the forearm. The EMG signal’s amplitude is reflected by the LED dots. This set-up may be used for home training.
FIGURE 2
FIGURE 2
Surface EMG biofeedback set-up with the TeleMyo system (Noraxon, United States) and screenshot of the TeleMyo-Software simultaneously recording two EMG signals, represented by color-coded graphs.
FIGURE 3
FIGURE 3
Rehabilitation process of both patient groups.
FIGURE 4
FIGURE 4
(A–D) sEMG-guided rehabilitation for patients with biologic reconstruction of upper extremity function. The scheme illustrates the rehabilitation process following an Oberlin’s ulnar nerve transfer.
FIGURE 5
FIGURE 5
(A–D) sEMG-guided rehabilitation for patients with bionic hand reconstruction.

References

    1. Anastakis D. J., Malessy M. J., Chen R., Davis K. D., Mikulis D. (2008). Cortical plasticity following nerve transfer in the upper extremity. Hand Clin. 24 425–444. 10.1016/j.hcl.2008.04.005
    1. Aszmann O. C., Roche A. D., Salminger S., Paternostro-Sluga T., Herceg M., Sturma A., et al. (2015). Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 385 2183–2189. 10.1016/S0140-6736(14)61776-1
    1. Bergmeister K. D., Vujaklija I., Muceli S., Sturma A., Hruby L. A., Prahm C., et al. (2017). Broadband prosthetic interfaces: combining nerve transfers and implantable multichannel EMG technology to decode spinal motor neuron activity. Front. Neurosci. 11:421. 10.3389/fnins.2017.00421
    1. Bertelli J. A., Ghizoni M. F. (2004). Reconstruction of C5 and C6 brachial plexus avulsion injury by multiple nerve transfers: spinal accessory to suprascapular, ulnar fascicles to biceps branch, and triceps long or lateral head branch to axillary nerve. J. Hand Surg. Am. 29 131–139. 10.1016/j.jhsa.2003.10.013
    1. Bertelli J. A., Ghizoni M. F. (2010). Reconstruction of complete palsies of the adult brachial plexus by root grafting using long grafts and nerve transfers to target nerves. J. Hand Surg. Am. 35 1640–1646. 10.1016/j.jhsa.2010.06.019
    1. Bertelli J. A., Ghizoni M. F. (2011). Results and current approach for brachial plexus reconstruction. J. Brachial Plex. Peripher. Nerve Inj. 6:2. 10.1186/1749-7221-6-2
    1. Bowering K. J., O’Connell N. E., Tabor A., Catley M. J., Leake H. B., Moseley G. I., et al. (2012). The effects of graded motor imagery and its components on chronic pain: a systematic review and meta-analysis. J. Pain 14 3–13. 10.1016/j.jpain.2012.09.007
    1. Carlstedt T., Anand P., Htut M., Misra P., Svensson M. (2004). Restoration of hand function and so called “breathing arm” after intraspinal repair of C5-T1 brachial plexus avulsion injury. Case report. Neurosurg. Focus 16:E7 10.3171/foc.2004.16.5.8
    1. Cram J. R. (2003). The history of surface electromyography. Appl. Psychophysiol. Biofeedback 28 81–91. 10.1023/A:1023802407132
    1. Dahlin L. B., Andersson G., Backman C., Svensson H., Bjorkman A. (2017). Rehabilitation, using guided cerebral plasticity, of a brachial plexus injury treated with intercostal and phrenic nerve transfers. Front. Neurol. 8:72. 10.3389/fneur.2017.00072
    1. Dumanian G. A., Ko J. H., O’shaughnessy K. D., Kim P. S., Wilson C. J., Kuiken T. A. (2009). Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast. Reconstr. Surg. 124 863–869. 10.1097/PRS.0b013e3181b038c9
    1. Elbert T., Flor H., Birbaumer N., Knecht S., Hampson S., Larbig W., et al. (1994). Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 5 2593–2597. 10.1097/00001756-199412000-00047
    1. Flor H. (2008). Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev. Neurother. 8 809–818. 10.1586/14737175.8.5.809
    1. Giggins O. M., Persson U. M., Caulfield B. (2013). Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 10:60. 10.1186/1743-0003-10-60
    1. Hruby L. A., Sturma A., Mayer J. A., Pittermann A., Salminger S., Aszmann O. C. (2017). Algorithm for bionic hand reconstruction in patients with global brachial plexopathies. J. Neurosurg. 127 1163–1171. 10.3171/2016.6.JNS16154
    1. Huang H., Lin J. J., Guo Y. I., Wang W. T. J., Chen Y. J. (2013). EMG biofeedback effectiveness to alter muscle activity pattern and scapular kinematics in subjects with and without shoulder impingement. J. Electromyogr. Kinesiol. 23 267–274. 10.1016/j.jelekin.2012.09.007
    1. James M. A. (2007). Use of the medical research council muscle strength grading system in the upper extremity. J. Hand Surg. Am. 32 154–156. 10.1016/j.jhsa.2006.11.008
    1. Johnson S. S., Mansfield E. (2014). Prosthetic training: upper limb. Phys. Med. Rehabil. Clin. N. Am. 25 133–151. 10.1016/j.pmr.2013.09.012
    1. Kahn L. C., Moore A. M. (2016). Donor activation focused rehabilitation approach: maximizing outcomes after nerve transfers. Hand Clin. 32 263–277. 10.1016/j.hcl.2015.12.014
    1. Kim J. H. (2017). The effects of training using EMG biofeedback on stroke patients upper extremity functions. J. Phys. Ther. Sci. 29 1085–1088. 10.1589/jpts.29.1085
    1. Kuiken T. A., Dumanian G. A., Lipschutz R. D., Miller L. A., Stubblefield K. A. (2004). The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28 245–253.
    1. Kuiken T. A., Miller L. A., Lipschutz R. D., Lock B. A., Stubblefield K., Marasco P. D., et al. (2007). Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369 371–380. 10.1016/S0140-6736(07)60193-7
    1. Liu Y., Lao J., Gao K., Gu Y., Xin Z. (2012). Outcome of nerve transfers for traumatic complete brachial plexus avulsion: results of 28 patients by DASH and NRS questionnaires. J. Hand Surg. Eur. Vol. 37 413–421. 10.1177/1753193411425330
    1. Lyle R. C. (1981). A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. Rehabil. Res. 4 483–492. 10.1097/00004356-198112000-00001
    1. Mackinnon S. E. (2016). Donor distal, recipient proximal and other personal perspectives on nerve transfers. Hand Clin. 32 141–151. 10.1016/j.hcl.2015.12.003
    1. Mackinnon S. E., Yee A., Ray W. Z. (2012). Nerve transfers for the restoration of hand function after spinal cord injury. J. Neurosurg. 117 176–185. 10.3171/2012.3.JNS12328
    1. Malessy M. J., Bakker D., Dekker A. J., Van Duk J. G., Thomeer R. T. (2003). Functional magnetic resonance imaging and control over the biceps muscle after intercostal-musculocutaneous nerve transfer. J. Neurosurg. 98 261–268. 10.3171/jns.2003.98.2.0261
    1. McCabe C. (2011). Mirror visual feedback therapy. A practical approach. J. Hand Ther. 24 170–178. 10.1016/j.jht.2010.08.003
    1. Millesi H. (1977). Surgical management of brachial plexus injuries. J. Hand Surg. Am. 2 367–378. 10.1016/S0363-5023(77)80046-4
    1. Moran S. L., Steinmann S. P., Shin A. Y. (2005). Adult brachial plexus injuries: mechanism, patterns of injury, and physical diagnosis. Hand Clin. 21 13–24. 10.1016/j.hcl.2004.09.004
    1. Narakas A. (1978). Surgical treatment of traction injuries of the brachial plexus. Clin. Orthop. Relat. Res. 133 71–90.
    1. Neblett R. (2016). Surface electromyographic (SEMG) biofeedback for chronic low back pain. Healthcare 4:E27. 10.3390/healthcare4020027
    1. Novak C. B. (2008). Rehabilitation following motor nerve transfers. Hand Clin. 24 417–423. 10.1016/j.hcl.2008.06.001
    1. Novak C. B., Von Der Heyde R. L. (2013). Evidence and techniques in rehabilitation following nerve injuries. Hand Clin. 29 383–392. 10.1016/j.hcl.2013.04.012
    1. Novak C. B., Von Der Heyde R. L. (2015). Rehabilitation of the upper extremity following nerve and tendon reconstruction: when and how. Semin. Plast. Surg. 29 73–80. 10.1055/s-0035-1544172
    1. Oberlin C., Ameur N. E., Teboul F., Beaulieu J. Y., Vacher C. (2002). Restoration of elbow flexion in brachial plexus injury by transfer of ulnar nerve fascicles to the nerve to the biceps muscle. Tech. Hand Up. Extrem. Surg. 6 86–90. 10.1097/00130911-200206000-00007
    1. Oberlin C., Beal D., Leechavengvongs S., Salon A., Dauge M. C., Sarcy J. J. (1994). Nerve transfer to biceps muscle using a part of ulnar nerve for C5-C6 avulsion of the brachial plexus: anatomical study and report of four cases. J. Hand Surg. Am. 19 232–237. 10.1016/0363-5023(94)90011-6
    1. Oravitan M., Avram C. (2013). The effectiveness of electromyographic biofeedback as part of a meniscal repair rehabilitation programme. J. Sports Sci. Med. 12 526–532.
    1. Pons T. P., Garraghty P. E., Ommaya A. K., Kaas J. H., Taub E., Mishkin M. (1991). Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252 1857–1860. 10.1126/science.1843843
    1. Prosser R., Conolly W. B. (2005). Rehabilitation of the Hand & Upper Extremity. Amsterdam: Elsevier Limited.
    1. Ramachandran V. S., Hirstein W. (1998). The perception of phantom limbs. The D. O. hebb lecture. Brain 121(Pt 9), 1603–1630.
    1. Ray W. Z., Pet M. A., Yee A., Mackinnon S. E. (2011). Double fascicular nerve transfer to the biceps and brachialis muscles after brachial plexus injury: clinical outcomes in a series of 29 cases. J. Neurosurg. 114 1520–1528. 10.3171/2011.1.JNS10810
    1. Rayegani S. M., Raeissadat S. A., Sedighipour L., Rezazadeh I. M., Bahrami M. H., Eliaspour D., et al. (2014). Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top Stroke Rehabil. 21 137–151. 10.1310/tsr2102-137
    1. Resnik L., Klinger S. L., Korp K., Walters L. S. (2014). Training protocol for powered shoulder prosthesis. J. Rehabil. Res. Dev. 51 vii–xvi. 10.1682/JRRD.2014.07.0162
    1. Salminger S., Roche A. D., Hruby L. A., Sturma A., Riedl O., Bergmeister K. D., et al. (2016). Prosthetic reconstruction to restore function in transcarpal amputees. J. Plast. Reconstr. Aesthet. Surg. 69 305–310. 10.1016/j.bjps.2015.10.029
    1. Terzis J. K., Kostopoulos V. K. (2007). The surgical treatment of brachial plexus injuries in adults. Plast. Reconstr. Surg. 119 73e–92e. 10.1097/01.prs.0000254859.51903.97
    1. Terzis J. K., Papakonstantinou K. C. (2000). The surgical treatment of brachial plexus injuries in adults. Plast. Reconstr. Surg. 106 1097–1122. 10.1097/00006534-200010000-00022
    1. Tung T. H., Mackinnon S. E. (2010). Nerve transfers: indications, techniques, and outcomes. J. Hand Surg. 35 332–341. 10.1016/j.jhsa.2009.12.002
    1. Tung T. H., Novak C. B., Mackinnon S. E. (2003). Nerve transfers to the biceps and brachialis branches to improve elbow flexion strength after brachial plexus injuries. J. Neurosurg. 98 313–318. 10.3171/jns.2003.98.2.0313
    1. Xiao C., Lao J., Wang T., Zhao X., Liu J., Gu Y. (2014). Intercostal nerve transfer to neurotize the musculocutaneous nerve after traumatic brachial plexus avulsion: a comparison of two, three, and four nerve transfers. J. Reconstr. Microsurg. 30 297–304. 10.1055/s-0033-1361840

Source: PubMed

3
Subscribe