Predictors of response to fixed-dose vasopressin in adult patients with septic shock

Gretchen L Sacha, Simon W Lam, Abhijit Duggal, Heather Torbic, Stephanie N Bass, Sarah C Welch, Robert S Butler, Seth R Bauer, Gretchen L Sacha, Simon W Lam, Abhijit Duggal, Heather Torbic, Stephanie N Bass, Sarah C Welch, Robert S Butler, Seth R Bauer

Abstract

Background: Vasopressin is often utilized for hemodynamic support in patients with septic shock. However, the most appropriate patient to initiate therapy in is unknown. This study was conducted to determine factors associated with hemodynamic response to fixed-dose vasopressin in patients with septic shock.

Methods: Single-center, retrospective cohort of patients receiving fixed-dose vasopressin for septic shock for at least 6 h with concomitant catecholamines in the medical, surgical, or neurosciences intensive care unit (ICU) at a tertiary care center. Patients were classified as responders or non-responders to fixed-dose vasopressin. Response was defined as a decrease in catecholamine dose requirements and achievement of mean arterial pressure ≥ 65 mmHg at 6 h after initiation of vasopressin.

Results: A total of 938 patients were included: 426 responders (45%), 512 non-responders (55%). Responders had lower rates of in-hospital (57 vs. 72%; P < 0.001) and ICU mortality (50 vs. 68%; P < 0.001), and increased ICU-free days at day 14 and hospital-free days at day 28 (2.3 ± 3.8 vs. 1.6 ± 3.3; P < 0.001 and 4.2 ± 7.2 vs. 2.8 ± 6.0; P < 0.001, respectively). On multivariable analysis, non-medical ICU location was associated with increased response odds (OR 1.70; P = 0.0049) and lactate at vasopressin initiation was associated with decreased response odds (OR 0.93; P = 0.0003). Factors not associated with response included APACHE III score, SOFA score, corticosteroid use, and catecholamine dose.

Conclusion: In this evaluation, 45% responded to the addition of vasopressin with improved outcomes compared to non-responders. The only factors found to be associated with vasopressin response were ICU location and lactate concentration.

Keywords: Catecholamines; Norepinephrine; Sepsis; Septic shock; Vasopressin; Vasopressors.

Figures

Fig. 1
Fig. 1
Patient inclusion and exclusion tree. There were 2555 patients screened for inclusion into the study. Of the screened patients, 1506 patients did not meet initial inclusion criteria and 111 met exclusion criteria leaving 938 patients included in the evaluation. AVP arginine vasopressin; CA catecholamine; EMR electronic medical record; OR operating room
Fig. 2
Fig. 2
Patient results over time for vasopressin responders and non-responders. a Catecholamine dose from -24 h to 72 h after vasopressin initiation. Responders had significantly lower catecholamine doses at 2, 3, 6, 12, 24 and 48 h after vasopressin initiation compared to non-responders. b Change in MAP from time 0 to 72 h after vasopressin initiation. Responders had significantly higher degrees of MAP change at 3 and 24 h after vasopressin initiation compared to non-responders. c Changes in lactate concentration from -24 h to 72 h after vasopressin initiation. Responders had significantly lower lactate concentrations at 2, 3, 6, 12, 24, and 48 h compared to nonresponders. d ScvO2 from -24 h to 72 h after vasopressin initiation. There was no difference in ScvO2 between responders and non-responders at any time point evaluated. MAP mean arterial pressure; NR non-responders; R responders; ScvO2 central venous oxygen saturation. Data are means, with error bars indicating standard deviation. ◊ P < 0.001

References

    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6.
    1. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–887. doi: 10.1056/NEJMoa067373.
    1. Russell JA, Lee T, Singer J, Boyd JH, Walley KR, Vasopressin et al. The septic shock 3.0 definition and trials: a vasopressin and septic shock trial experience. Crit Care Med. 2017;45(6):940–948. doi: 10.1097/CCM.0000000000002323.
    1. Beck V, Chateau D, Bryson GL, Pisipati A, Zanotti S, Parrillo JE, et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Crit Care. 2014;18(3):R97. doi: 10.1186/cc13868.
    1. Bai X, Yu W, Ji W, Lin Z, Tan S, Duan K, et al. Early versus delayed administration of norepinephrine in patients with septic shock. Crit Care. 2014;18(5):532. doi: 10.1186/s13054-014-0532-y.
    1. Dunser MW, Ruokonen E, Pettila V, Ulmer H, Torgersen C, Schmittinger CA, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13(6):R181. doi: 10.1186/cc8167.
    1. Rudiger A, Singer M. Decatecholaminisation during sepsis. Crit Care. 2016;20(1):309. doi: 10.1186/s13054-016-1488-x.
    1. Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42(9):1387–1397. doi: 10.1007/s00134-016-4249-z.
    1. Hammond DA, Cullen J, Painter JT, McCain K, Clem OA, Brotherton AL, et al. Efficacy and safety of the early addition of vasopressin to norepinephrine in septic shock. J Intensive Care Med. 2017
    1. Clem OPJ, Cullen J, McCain K, Kakkera K, Meena N, Hammond D. Norepinephrine and vasopressin vs norepinephrine alone for septic shock: randomized controlled trial [abstract] Crit Care Med. 2016;44(12 Suppl 1):1350.
    1. Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36(1):83–91. doi: 10.1007/s00134-009-1687-x.
    1. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27(8):1416–1421. doi: 10.1007/s001340101014.
    1. Russell JA, Walley KR, Gordon AC, Cooper DJ, Hebert PC, Singer J, et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37(3):811–818. doi: 10.1097/CCM.0b013e3181961ace.
    1. Bauer SR, Lam SW, Cha SS, Oyen LJ. Effect of corticosteroids on arginine vasopressin-containing vasopressor therapy for septic shock: a case control study. J Crit Care. 2008;23(4):500–506. doi: 10.1016/j.jcrc.2008.04.002.
    1. Torgersen C, Luckner G, Schroder DC, Schmittinger CA, Rex C, Ulmer H, et al. Concomitant arginine-vasopressin and hydrocortisone therapy in severe septic shock: association with mortality. Intensive Care Med. 2011;37(9):1432–1437. doi: 10.1007/s00134-011-2312-3.
    1. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31(8):1066–1071. doi: 10.1007/s00134-005-2688-z.
    1. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–2256. doi: 10.1056/NEJMoa040232.
    1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–139. doi: 10.1056/NEJMoa070716.
    1. Wacharasint P, Boyd JH, Russell JA, Walley KR. One size does not fit all in severe infection: obesity alters outcome, susceptibility, treatment, and inflammatory response. Crit Care. 2013;17(3):R122. doi: 10.1186/cc12794.
    1. Miller JT, Welage LS, Kraft MD, Alaniz C. Does body weight impact the efficacy of vasopressin therapy in the management of septic shock? J Crit Care. 2012;27(3):289–293. doi: 10.1016/j.jcrc.2011.06.018.
    1. DA Belsley KE, Welsch RE. Regression diagnostics: identifying influential data and sources of collinearity. Hoboken: Wiley; 1980.
    1. Vail EA, Gershengorn HB, Hua M, Walkey AJ, Wunsch H. Epidemiology of vasopressin use for adults with septic shock. Ann Am Thorac Soc. 2016;13(10):1760–1767.
    1. Russell JA. Bench-to-bedside review: vasopressin in the management of septic shock. Crit Care. 2011;15(4):226. doi: 10.1186/cc8224.
    1. Landry DW, Levin HR, Gallant EM, Ashton RC, Jr, Seo S, D’Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–1125. doi: 10.1161/01.CIR.95.5.1122.
    1. Landry DW, Levin HR, Gallant EM, Seo S, D’Alessandro D, Oz MC, et al. Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med. 1997;25(8):1279–1282. doi: 10.1097/00003246-199708000-00012.
    1. Holmes CL. Vasopressin in septic shock: does dose matter? Crit Care Med. 2004;32(6):1423–1424. doi: 10.1097/01.CCM.0000126377.73419.B9.
    1. Holmes CL, Patel BM, Russell JA, Walley KR. Physiology of vasopressin relevant to management of septic shock. Chest. 2001;120(3):989–1002. doi: 10.1378/chest.120.3.989.
    1. Wu JY, Stollings JL, Wheeler AP, Semler MW, Rice TW. Efficacy and outcomes after vasopressin guideline implementation in septic shock. Ann Pharmacother. 2016
    1. Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316(5):509–518. doi: 10.1001/jama.2016.10485.
    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–1310. doi: 10.1097/00003246-200107000-00002.
    1. Esper AM, Martin GS. The impact of comorbid [corrected] conditions on critical illness. Crit Care Med. 2011;39(12):2728–2735. doi: 10.1097/CCM.0b013e318236f27e.
    1. Annane D, Vignon P, Renault A, Bollaert PE, Charpentier C, Martin C, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370(9588):676–684. doi: 10.1016/S0140-6736(07)61344-0.
    1. Sligl WI, Milner DA, Jr, Sundar S, Mphatswe W, Majumdar SR. Safety and efficacy of corticosteroids for the treatment of septic shock: a systematic review and meta-analysis. Clin Infect Dis. 2009;49(1):93–101. doi: 10.1086/599343.
    1. Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–871. doi: 10.1001/jama.288.7.862.
    1. Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–430. doi: 10.1056/NEJMoa1704154.
    1. Torgersen C, Dunser MW, Wenzel V, Jochberger S, Mayr V, Schmittinger CA, et al. Comparing two different arginine vasopressin doses in advanced vasodilatory shock: a randomized, controlled, open-label trial. Intensive Care Med. 2010;36(1):57–65. doi: 10.1007/s00134-009-1630-1.

Source: PubMed

3
Subscribe