Parental Preconception Exposures to Outdoor Neighbourhood Environments and Adverse Birth Outcomes: A Protocol for a Scoping Review and Evidence Map

Suzanne Mavoa, Daniel Keevers, Stefan C Kane, Melissa Wake, Rachel Tham, Kate Lycett, Yen Ting Wong, Katherine Chong, Suzanne Mavoa, Daniel Keevers, Stefan C Kane, Melissa Wake, Rachel Tham, Kate Lycett, Yen Ting Wong, Katherine Chong

Abstract

Parental preconception exposures to built and natural outdoor environments could influence pregnancy and birth outcomes either directly, or via a range of health-related behaviours and conditions. However, there is no existing review summarising the evidence linking natural and built characteristics, such as air and noise pollution, walkability, greenness with pregnancy and birth outcomes. Therefore, the planned scoping review aims to collate and map the published literature on parental preconception exposures to built and natural outdoor environments and adverse pregnancy and birth outcomes. We will search electronic databases (MEDLINE, EMBASE, Scopus) to identify studies for inclusion. Studies will be included if they empirically assess the relationship between maternal and paternal preconception exposures to physical natural and built environment features that occur outdoors in the residential neighbourhood and adverse pregnancy and birth outcomes. Two reviewers will independently screen titles and abstracts, and then the full text. Data extraction and assessment of study quality will be performed by one researcher and checked by a second researcher. Results will be summarised in a narrative synthesis, with additional summaries presented as tables and figures. The scoping review will be disseminated via a peer-reviewed publication, at academic conferences, and published on a website.

Keywords: birth outcomes; built environment; natural environment; preconception; pregnancy outcomes; scoping review protocol.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Knop M.R., Geng T., Gorny A.W., Ding R., Li C., Ley S.H., Huang T. Birth Weight and Risk of Type 2 Diabetes Mellitus, Cardiovascular Disease, and Hypertension in Adults: A Meta-Analysis of 7 646 267 Participants from 135 Studies. J. Am. Heart Assoc. 2018;7:e008870. doi: 10.1161/JAHA.118.008870.
    1. Markopoulou P., Papanikolaou E., Analytis A., Zoumakis E., Siahanidou T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019;210:69–80.e5. doi: 10.1016/j.jpeds.2019.02.041.
    1. Matheson M.C., D’Olhaberriague A.L.-P., Burgess J.A., Giles G.G., Hopper J.L., Johns D.P., Abramson M.J., Walters E.H., Dharmage S.C. Preterm birth and low birth weight continue to increase the risk of asthma from age 7 to 43. J. Asthma. 2017;54:616–623. doi: 10.1080/02770903.2016.1249284.
    1. Mathewson K.J., Chow C.H.T., Dobson K.G., Pope E.I., Schmidt L.A., Van Lieshout R.J. Mental health of extremely low birth weight survivors: A systematic review and meta-analysis. Psychol. Bull. 2017;143:347–383. doi: 10.1037/bul0000091.
    1. Stothard K.J., Tennant P.W.G., Bell R., Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: A systematic review and meta-analysis. JAMA. 2009;301:636–650. doi: 10.1001/jama.2009.113.
    1. Mosca L., Benjamin E.J., Berra K., Bezanson J.L., Dolor R.J., Lloyd-Jones D.M., Newby L.K., Pina I.L., Roger V.L., Shaw L.J., et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: A guideline from the American Heart Association. J. Am. Coll. Cardiol. 2011;57:1404–1423. doi: 10.1016/j.jacc.2011.02.005.
    1. Shah B.R., Retnakaran R., Booth G.L. Increased Risk of Cardiovascular Disease in Young Women Following Gestational Diabetes Mellitus. Diabetes Care. 2008;31:1668–1669. doi: 10.2337/dc08-0706.
    1. Bohrer J., Ehrenthal D.B. Other adverse pregnancy outcomes and future chronic disease. Semin. Perinatol. 2015;39:259–263. doi: 10.1053/j.semperi.2015.05.003.
    1. Meaney M.J. Perinatal Maternal Depressive Symptoms as an Issue for Population Health. Am. J. Psychiatry. 2018;175:1084–1093. doi: 10.1176/appi.ajp.2018.17091031.
    1. Borschmann R., Molyneaux E., Spry E., Moran P., Howard L., Macdonald J., Brown S.J., Moreno-Betancur M., Olsson C.A., Patton G.C. Pre-conception self-harm, maternal mental health and mother–infant bonding problems: A 20-year prospective cohort study. Psychol. Med. 2019;49:2727–2735. doi: 10.1017/S0033291718003689.
    1. Flies E.J., Mavoa S., Zosky G.R., Mantzioris E., Williams C., Eri R., Brook B.W., Buettel J.C. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ. Int. 2019;133:105187. doi: 10.1016/j.envint.2019.105187.
    1. Tham R., Erbas B., Akram M., Dennekamp M., Abramson M.J. The impact of smoke on respiratory hospital outcomes during the 2002–2003 bushfire season, Victoria, Australia. Respirology. 2009;14:69–75. doi: 10.1111/j.1440-1843.2008.01416.x.
    1. Mavoa S., Lucassen M., Denny S., Utter J., Clark T., Smith M. Natural neighbourhood environments and the emotional health of urban New Zealand adolescents. Landsc. Urban Plan. 2019;191:103638. doi: 10.1016/j.landurbplan.2019.103638.
    1. Pinter-Wollman N., Jelić A., Wells N.M. The impact of the built environment on health behaviours and disease transmission in social systems. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170245. doi: 10.1098/rstb.2017.0245.
    1. Bai W., Li Y., Niu Y., Ding Y., Yu X., Zhu B., Duan R., Duan H., Kou C., Li Y., et al. Association between ambient air pollution and pregnancy complications: A systematic review and meta-analysis of cohort studies. Environ. Res. 2020;185:109471. doi: 10.1016/j.envres.2020.109471.
    1. Li X., Huang S., Jiao A., Yang X., Yun J., Wang Y., Xue X., Chu Y., Liu F., Liu Y., et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environ. Pollut. 2017;227:596–605. doi: 10.1016/j.envpol.2017.03.055.
    1. Ravindra K., Chanana N., Mor S. Exposure to air pollutants and risk of congenital anomalies: A systematic review and metaanalysis. Sci. Total Environ. 2020;765:142772. doi: 10.1016/j.scitotenv.2020.142772.
    1. Nieuwenhuijsen M.J., Ristovska G., Dadvand P. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Adverse Birth Outcomes. Int. J. Environ. Res. Public Health. 2017;14:1252. doi: 10.3390/ijerph14101252.
    1. Auger N., Duplaix M., Bilodeau-Bertrand M., Lo E., Smargiassi A. Environmental noise pollution and risk of preeclampsia. Environ. Pollut. 2018;239:599–606. doi: 10.1016/j.envpol.2018.04.060.
    1. Zhan Y., Liu J., Lu Z., Yue H., Zhang J., Jiang Y. Influence of residential greenness on adverse pregnancy outcomes: A systematic review and dose-response meta-analysis. Sci. Total Environ. 2020;718:137420. doi: 10.1016/j.scitotenv.2020.137420.
    1. Twohig-Bennett C., Jones A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 2018;166:628–637. doi: 10.1016/j.envres.2018.06.030.
    1. Banay R.F., Bezold C.P., James P., E Hart J., Laden F. Residential greenness: Current perspectives on its impact on maternal health and pregnancy outcomes. Int. J. Women Health. 2017;9:133–144. doi: 10.2147/IJWH.S125358.
    1. Marcho C., Oluwayiose O.A., Pilsner J.R. The preconception environment and sperm epigenetics. Andrology. 2020;8:924–942. doi: 10.1111/andr.12753.
    1. Mustieles V., Zhang Y., Yland J., Braun J.M., Williams P.L., Wylie B.J., Attaman J.A., Ford J.B., Azevedo A., Calafat A.M., et al. Maternal and paternal preconception exposure to phenols and preterm birth. Environ. Int. 2020;137:105523. doi: 10.1016/j.envint.2020.105523.
    1. Messerlian C., Williams P.L., Ford J.B., Chavarro J., Mínguez-Alarcón L., Dadd R., Braun J.M., Gaskins A.J., Meeker J.D., James-Todd T., et al. The Environment and Reproductive Health (EARTH) Study: A prospective preconception cohort. Hum. Reprod. Open. 2018;2018:hoy001. doi: 10.1093/hropen/hoy001.
    1. Stephenson J., Heslehurst N., Hall J., Schoenaker D.A.J.M., Hutchinson J., Cade J.E., Poston L., Barrett G., Crozier S.R., Barker M., et al. Before the beginning: Nutrition and lifestyle in the preconception period and its importance for future health. Lancet. 2018;391:1830–1841. doi: 10.1016/S0140-6736(18)30311-8.
    1. Braun J.M., Messerlian C., Hauser R. Fathers Matter: Why It’s Time to Consider the Impact of Paternal Environmental Exposures on Children’s Health. Curr. Epidemiol. Rep. 2017;4:46–55. doi: 10.1007/s40471-017-0098-8.
    1. Segal T.R., Giudice L.C. Before the beginning: Environmental exposures and reproductive and obstetrical outcomes. Fertil. Steril. 2019;112:613–621. doi: 10.1016/j.fertnstert.2019.08.001.
    1. Noble D., Jablonka E., Joyner M.J., Müller G.B., Omholt S.W. Evolution evolves: Physiology returns to centre stage. J. Physiol. 2014;592:2237–2244. doi: 10.1113/jphysiol.2014.273151.
    1. Toivonen K.I., Oinonen K.A., Duchene K.M. Preconception health behaviours: A scoping review. Prev. Med. 2017;96:1–15. doi: 10.1016/j.ypmed.2016.11.022.
    1. Cavalli G., Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–499. doi: 10.1038/s41586-019-1411-0.
    1. Hill B., Hall J., Skouteris H., Currie S. Defining preconception: Exploring the concept of a preconception population. BMC Pregnancy Childbirth. 2020;20:1–11. doi: 10.1186/s12884-020-02973-1.
    1. Jacob C.M., Newell M., Hanson M. Narrative review of reviews of preconception interventions to prevent an increased risk of obesity and non-communicable diseases in children. Obes. Rev. 2019;20:5–17. doi: 10.1111/obr.12769.
    1. Robledo C.A., Mendola P., Yeung E., Männistö T., Sundaram R., Liu D., Ying Q., Sherman S., Grantz K. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ. Res. 2015;137:316–322. doi: 10.1016/j.envres.2014.12.020.
    1. Zhang M., Wang X., Yang X., Dong T., Hu W., Guan Q., Tun H.M., Chen Y., Chen R., Sun Z., et al. Increased risk of gestational diabetes mellitus in women with higher prepregnancy ambient PM2.5 exposure. Sci. Total Environ. 2020;730:138982. doi: 10.1016/j.scitotenv.2020.138982.
    1. Daxinger L., Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 2012;13:153–162. doi: 10.1038/nrg3188.
    1. Fernandez-Twinn D.S., Constância M., Ozanne S.E. Seminars in Cell & Developmental Biology. Elsevier; Amsterdam, The Netherlands: 2015. Intergenerational Epigenetic Inheritance in Models of Developmental Programming of Adult Disease.
    1. Krawetz S.A. Paternal contribution: New insights and future challenges. Nat. Rev. Genet. 2005;6:633–642. doi: 10.1038/nrg1654.
    1. Puri D., Dhawan J., Mishra R.K. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin. Epigenetics. 2010;5:386–391. doi: 10.4161/epi.5.5.12005.
    1. Rando O.J. Daddy Issues: Paternal Effects on Phenotype. Cell. 2012;151:702–708. doi: 10.1016/j.cell.2012.10.020.
    1. Szyf M. Nongenetic inheritance and transgenerational epigenetics. Trends Mol. Med. 2015;21:134–144. doi: 10.1016/j.molmed.2014.12.004.
    1. Zhang Y., Mustieles V., Yland J., Braun J.M., Williams P.L., Attaman J.A., Ford J.B., Calafat A.M., Hauser R., Messerlian C. Association of Parental Preconception Exposure to Phthalates and Phthalate Substitutes With Preterm Birth. JAMA Netw. Open. 2020;3:e202159. doi: 10.1001/jamanetworkopen.2020.2159.
    1. Mustieles V., Williams P.L., Fernandez M.F., Mínguez-Alarcón L., Ford J.B., Calafat A.M., Hauser R., Messerlian C. Environment and Reproductive Health (EARTH) Study Team Maternal and paternal preconception exposure to bisphenols and size at birth. Hum. Reprod. 2018;33:1528–1537. doi: 10.1093/humrep/dey234.
    1. Smarr M.M., Grantz K.L., Sundaram R., Maisog J.M., Kannan K., Louis G.M.B. Parental urinary biomarkers of preconception exposure to bisphenol A and phthalates in relation to birth outcomes. Environ. Health. 2015;14:1–11. doi: 10.1186/s12940-015-0060-5.
    1. Sallis J.F., Cerin E., De Bourdeaudhuij I., Owen N., Kerr J., Adams M.A., Sugiyama T., Christiansen L.B., Schipperijn J., Davey R., et al. Built Environment, Physical Activity, and Obesity: Findings from the International Physical Activity and Environment Network (IPEN) Adult Study. Annu. Rev. Public Health. 2020;41:119–139. doi: 10.1146/annurev-publhealth-040218-043657.
    1. Oliver M., Witten K., Sweetsur P., Kearns R., Blakely T., Parker K., Badland H., Schofield G., Ivory V., Pearce J., et al. Neighbourhood built environment associations with body size in adults: Mediating effects of activity and sedentariness in a cross-sectional study of New Zealand adults. BMC Public Health. 2015;15:1–11. doi: 10.1186/s12889-015-2292-2.
    1. Finan L., Lipperman-Kreda S., Abadi M., Grube J., Kaner E., Balassone A., Gaidus A. Tobacco outlet density and adolescents’ cigarette smoking: A meta-analysis. Tob. Control. 2018;28:27–33. doi: 10.1136/tobaccocontrol-2017-054065.
    1. Popova S., Giesbrecht N., Bekmuradov D., Patra J. Hours and Days of Sale and Density of Alcohol Outlets: Impacts on Alcohol Consumption and Damage: A Systematic Review. Alcohol Alcohol. 2009;44:500–516. doi: 10.1093/alcalc/agp054.
    1. Stevenson A.C., Brazeau A.-S., Dasgupta K., Ross N.A. Evidence synthesis-Neighbourhood retail food outlet access, diet and body mass index in Canada: A systematic review. Health Promot. Chronic Dis. Prev. Can. 2019;39:261–280. doi: 10.24095/hpcdp.39.10.01.
    1. Pitt E., Gallegos D., Comans T., Cameron C., Thornton L. Exploring the influence of local food environments on food behaviours: A systematic review of qualitative literature. Public Health Nutr. 2017;20:2393–2405. doi: 10.1017/S1368980017001069.
    1. Caspi C.E., Sorensen G., Subramanian S., Kawachi I. The local food environment and diet: A systematic review. Health Place. 2012;18:1172–1187. doi: 10.1016/j.healthplace.2012.05.006.
    1. Fong K.C., Hart J.E., James P. A Review of Epidemiologic Studies on Greenness and Health: Updated Literature through 2017. Curr. Environ. Health Rep. 2018;5:77–87. doi: 10.1007/s40572-018-0179-y.
    1. Villeneuve P.J., Jerrett M., Su J.G., Weichenthal S., Sandler D.P. Association of residential greenness with obesity and physical activity in a US cohort of women. Environ. Res. 2018;160:372–384. doi: 10.1016/j.envres.2017.10.005.
    1. Mavoa S., Davern M., Breed M., Hahs A. Higher levels of greenness and biodiversity associate with greater subjective wellbeing in adults living in Melbourne, Australia. Health Place. 2019;57:321–329. doi: 10.1016/j.healthplace.2019.05.006.
    1. Lai H., Flies E.J., Weinstein P., Woodward A. The impact of green space and biodiversity on health. Front. Ecol. Environ. 2019;17:383–390. doi: 10.1002/fee.2077.
    1. White M.P., Elliott L.R., Gascon M., Roberts B., Fleming L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020;191:110169. doi: 10.1016/j.envres.2020.110169.
    1. Aerts R., Honnay O., Van Nieuwenhuyse A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018;127:5–22. doi: 10.1093/bmb/ldy021.
    1. Berry M.S., Rung J.M., Crawford M.C., Yurasek A.M., Ferreiro A.V., Almog S. Using greenspace and nature exposure as an adjunctive treatment for opioid and substance use disorders: Preliminary evidence and potential mechanisms. Behav. Process. 2021;186:104344. doi: 10.1016/j.beproc.2021.104344.
    1. Cabrera J.F., Najarian J.C. How the Built Environment Shapes Spatial Bridging Ties and Social Capital. Environ. Behav. 2015;47:239–267. doi: 10.1177/0013916513500275.
    1. Van den Berg A.E., Maas J., Verheij R.A., Groenewegen P.P. Green space as a buffer between stressful life events and health. Soc. Sci. Med. 2010;70:1203–1210. doi: 10.1016/j.socscimed.2010.01.002.
    1. Schoenaker D.A., Vergouwe Y., Soedamah-Muthu S.S., Callaway L.K., Mishra G.D. Preconception risk of gestational diabetes: Development of a prediction model in nulliparous Australian women. Diabetes Res. Clin. Pract. 2018;146:48–57. doi: 10.1016/j.diabres.2018.09.021.
    1. Grieger J.A. Preconception diet, fertility, and later health in pregnancy. Curr. Opin. Obstet. Gynecol. 2020;32:227–232. doi: 10.1097/GCO.0000000000000629.
    1. Gete D.G., Waller M., Mishra G.D. Prepregnancy dietary patterns and risk of preterm birth and low birth weight: Findings from the Australian Longitudinal Study on Women’s Health. Am. J. Clin. Nutr. 2020;111:1048–1058. doi: 10.1093/ajcn/nqaa057.
    1. Salavati N., Bakker M.K., Lewis F., Vinke P.C., Mubarik F., Erwich J.H.M., Van Der Beek E.M. Associations between preconception macronutrient intake and birth weight across strata of maternal BMI. PLoS ONE. 2020;15:e0243200. doi: 10.1371/journal.pone.0243200.
    1. Reilly N., Loxton D., Black E., Austin M.-P. The Antenatal Risk Questionnaire-Revised: Development, use and test-retest reliability in a community sample of pregnant women in Australia. J. Affect. Disord. 2021;293:43–50. doi: 10.1016/j.jad.2021.05.081.
    1. Philips E.M., Santos S., Trasande L., Aurrekoetxea J.J., Barros H., Von Berg A., Bergström A., Bird P.K., Brescianini S., Chaoimh C.N., et al. Changes in parental smoking during pregnancy and risks of adverse birth outcomes and childhood overweight in Europe and North America: An individual participant data meta-analysis of 229,000 singleton births. PLoS Med. 2020;17:e1003182. doi: 10.1371/journal.pmed.1003182.
    1. Witt W.P., Wisk L.E., Cheng E.R., Hampton J.M., Hagen E.W. Preconception Mental Health Predicts Pregnancy Complications and Adverse Birth Outcomes: A National Population-Based Study. Matern. Child Health J. 2012;16:1525–1541. doi: 10.1007/s10995-011-0916-4.
    1. Kothari A., Thayalan K., Dulhunty J., Callaway L. The forgotten father in obstetric medicine. Obstet. Med. 2019;12:57–65. doi: 10.1177/1753495X18823479.
    1. Hannan A.J. Paternal bloodlines sculpting seminal concepts: Circulating factors as mediators of transgenerational ‘epigenopathy’ and ‘epigenetic resilience’. EMBO J. 2020;39:e107014. doi: 10.15252/embj.2020107014.
    1. Day J., Savani S., Krempley B.D., Nguyen M., Kitlinska J.B. Influence of paternal preconception exposures on their offspring: Through epigenetics to phenotype. Am. J. Stem Cells. 2016;5:11–18.
    1. McPherson N.O., Owens J., Fullston T., Lane M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Metab. 2015;308:E805–E821. doi: 10.1152/ajpendo.00013.2015.
    1. Messerlian C., Bellinger D., Mínguez-Alarcón L., Romano M., Ford J.B., Williams P.L., Calafat A.M., Hauser R., Braun J.M. Paternal and maternal preconception urinary phthalate metabolite concentrations and child behavior. Environ. Res. 2017;158:720–728. doi: 10.1016/j.envres.2017.07.032.
    1. Donkin I., Barrès R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018;14:1–11. doi: 10.1016/j.molmet.2018.02.006.
    1. McBride N., Johnson S. Fathers’ Role in Alcohol-Exposed Pregnancies: Systematic Review of Human Studies. Am. J. Prev. Med. 2016;51:240–248. doi: 10.1016/j.amepre.2016.02.009.
    1. A Spry E., A Wilson C., Middleton M., Moreno-Betancur M., Doyle L.W., Howard L.M., Hannan A.J., E Wlodek M., Cheong J.L., A Hines L., et al. Parental mental health before and during pregnancy and offspring birth outcomes: A 20-year preconception cohort of maternal and paternal exposure. EClinicalMedicine. 2020;27:100564. doi: 10.1016/j.eclinm.2020.100564.
    1. Kasman A.M., Zhang C.A., Li S., Stevenson D.K., Shaw G.M., Eisenberg M.L. Association of preconception paternal health on perinatal outcomes: Analysis of U.S. claims data. Fertil. Steril. 2020;113:947–954. doi: 10.1016/j.fertnstert.2019.12.026.
    1. Moss J.L., Harris K.M. Impact of maternal and paternal preconception health on birth outcomes using prospective couples’ data in Add Health. Arch. Gynecol. Obstet. 2014;291:287–298. doi: 10.1007/s00404-014-3521-0.
    1. Peters M.D.J., Godfrey C.M., Khalil H., McInerney P., Parker D., Soares C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Health. 2015;13:141–146. doi: 10.1097/XEB.0000000000000050.
    1. Veritas Health Innovation . Covidence Systematic Review Software. Veritas Health Innovation; Melbourne, Australia: 2021.
    1. Ma L.-L., Wang X., Yang Z.-H., Huang D., Weng H., Zeng X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020;7:1–11. doi: 10.1186/s40779-020-00238-8.
    1. Moola S., Munn Z., Tufanaru C., Aromataris E., Sears K., Sfetcu R., Currie M., Lisy K., Qureshi R., Mattis P., et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E., Munn Z., editors. JBI Manual for Evidence Synthesis. JBI; Adelaide, Australia: 2020.

Source: PubMed

3
Subscribe