Modulation by Ozone Therapy of Oxidative Stress in Chemotherapy-Induced Peripheral Neuropathy: The Background for a Randomized Clinical Trial

Bernardino Clavo, Gregorio Martínez-Sánchez, Francisco Rodríguez-Esparragón, Delvys Rodríguez-Abreu, Saray Galván, David Aguiar-Bujanda, Juan A Díaz-Garrido, Silvia Cañas, Laura B Torres-Mata, Himar Fabelo, Teresa Téllez, Norberto Santana-Rodríguez, Leandro Fernández-Pérez, Gustavo Marrero-Callico, Bernardino Clavo, Gregorio Martínez-Sánchez, Francisco Rodríguez-Esparragón, Delvys Rodríguez-Abreu, Saray Galván, David Aguiar-Bujanda, Juan A Díaz-Garrido, Silvia Cañas, Laura B Torres-Mata, Himar Fabelo, Teresa Téllez, Norberto Santana-Rodríguez, Leandro Fernández-Pérez, Gustavo Marrero-Callico

Abstract

(1) Background: Chemotherapy-induced peripheral neuropathy (CIPN) decreases the quality of life of patients and can lead to a dose reduction and/or the interruption of chemotherapy treatment, limiting its effectiveness. Potential pathophysiological mechanisms involved in the pathogenesis of CIPN include chronic oxidative stress and subsequent increase in free radicals and proinflammatory cytokines. Approaches for the treatment of CIPN are highly limited in their number and efficacy, although several antioxidant-based therapies have been tried. On the other hand, ozone therapy can induce an adaptive antioxidant and anti-inflammatory response, which could be potentially useful in the management of CIPN. (2) Methods: The aims of this works are: (a) to summarize the potential mechanisms that could induce CIPN by the most relevant drugs (platinum, taxanes, vinca alkaloids, and bortezomib), with particular focus on the role of oxidative stress; (b) to summarize the current situation of prophylactic and treatment approaches; (c) to describe the action mechanisms of ozone therapy to modify oxidative stress and inflammation with its potential repercussions for CIPN; (d) to describe related experimental and clinical reports with ozone therapy in chemo-induced neurologic symptoms and CIPN; and (e) to show the main details about an ongoing focused clinical trial. (3) Results: A wide background relating to the mechanisms of action and a small number of experimental and clinical reports suggest that ozone therapy could be useful to prevent or improve CIPN. (4) Conclusions: Currently, there are no clinically relevant approaches for the prevention and treatment of stablished CIPN. The potential role of ozone therapy in this syndrome merits further research. Randomized controlled trials are ongoing.

Keywords: antioxidants; cancer treatment; chemotherapy-induced peripheral neuropathy; chemotherapy-induced side effects; chemotherapy-induced toxicity; free radicals; oxaliplatin; oxidative stress; ozone therapy; randomized clinical trial.

Conflict of interest statement

The authors declare no other conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. All authors confirm that they had full access to all the data in the study and accept responsibility to submit for publication.

Figures

Figure 1
Figure 1
Hypothetic effects of ozone mediators on Nrf2 and NfκB pathways. After administration, ozone reacts with biomolecules, including polyunsaturated fatty acids (PUFA) or plasma membrane, producing hydroperoxides, aldehydes, and H2O2 [60]. H2O2 can enter the cytoplasm of mononuclear cells and modulate nuclear factor NF-κB/Nrf2 pathways. Casein kinase 2 (CK2), CREB binding protein (CBP), cyclooxygenase-2 (COX-2), Electrophile-responsive elements (EpRE), Epidermal growth factor receptor (EGFr), Heme-oxygenase-1 (HO-1), Histone deacetylase 3 (HDAC3), Inducible nitric oxide synthase (iNOS), Interleukin-1β (IL-1 β), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Intracellular adhesion molecule (ICAM), IκB kinase (IKK), Kelch-like ECH-associated protein 1 (Keap1), Nuclear erythroid 2 related factor 2 (Nrf2), Phospholipase A2 (PLA2), Tumor necrosis factor-α (TNF-α).

References

    1. Markham M.J., Wachter K., Agarwal N., Bertagnolli M.M., Chang S.M., Dale W., Diefenbach C.S.M., Rodriguez-Galindo C., George D.J., Gilligan T.D., et al. Clinical Cancer Advances 2020: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology. J. Clin. Oncol. 2020;38:1081. doi: 10.1200/JCO.19.03141.
    1. Zajaczkowska R., Kocot-Kepska M., Leppert W., Wrzosek A., Mika J., Wordliczek J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019;20:1451. doi: 10.3390/ijms20061451.
    1. Velasco R., Bruna J. Chemotherapy-induced peripheral neuropathy: An unresolved issue. Neurologia. 2010;25:116–131. doi: 10.1016/S0213-4853(10)70036-0.
    1. Smith E.M., Pang H., Cirrincione C., Fleishman S., Paskett E.D., Ahles T., Bressler L.R., Fadul C.E., Knox C., Le-Lindqwister N., et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA. 2013;309:1359–1367. doi: 10.1001/jama.2013.2813.
    1. Sisignano M., Baron R., Scholich K., Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat. Rev. Neurol. 2014;10:694–707. doi: 10.1038/nrneurol.2014.211.
    1. Albers J.W., Chaudhry V., Cavaletti G., Donehower R.C. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst. Rev. 2014;3:CD005228. doi: 10.1002/14651858.CD005228.pub4.
    1. Hershman D.L., Lacchetti C., Dworkin R.H., Lavoie Smith E.M., Bleeker J., Cavaletti G., Chauhan C., Gavin P., Lavino A., Lustberg M.B., et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2014;32:1941–1967. doi: 10.1200/JCO.2013.54.0914.
    1. Loprinzi C.L., Lacchetti C., Bleeker J., Cavaletti G., Chauhan C., Hertz D.L., Kelley M.R., Lavino A., Lustberg M.B., Paice J.A., et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020;38:3325–3348. doi: 10.1200/JCO.20.01399.
    1. Starobova H., Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol. Neurosci. 2017;10:174. doi: 10.3389/fnmol.2017.00174.
    1. Salat K. Chemotherapy-induced peripheral neuropathy: Part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol. Rep. 2020;72:486–507. doi: 10.1007/s43440-020-00109-y.
    1. Gu X., Yu N., Pang X., Zhang W., Zhang J., Zhang Y. EXPRESS: Products of oxidative stress and TRPA1 expression in the brainstem of rats after lung ischemia-reperfusion injury. Pulm. Circ. 2019;9 doi: 10.1177/2045894019865169.
    1. Clavo B., Rodriguez-Esparragon F., Rodriguez-Abreu D., Martinez-Sanchez G., Llontop P., Aguiar-Bujanda D., Fernandez-Perez L., Santana-Rodriguez N. Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants. 2019;8:588. doi: 10.3390/antiox8120588.
    1. Areti A., Yerra V.G., Naidu V., Kumar A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289–295. doi: 10.1016/j.redox.2014.01.006.
    1. Ma P., Xiao H., Yu C., Liu J., Cheng Z., Song H., Zhang X., Li C., Wang J., Gu Z., et al. Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano. Lett. 2017;17:928–937. doi: 10.1021/acs.nanolett.6b04269.
    1. Wang S., Yu G., Wang Z., Jacobson O., Lin L.S., Yang W., Deng H., He Z., Liu Y., Chen Z.Y., et al. Enhanced Antitumor Efficacy by a Cascade of Reactive Oxygen Species Generation and Drug Release. Angew. Chem. Int. Ed. Engl. 2019;58:14758–14763. doi: 10.1002/anie.201908997.
    1. Moloney J.N., Cotter T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018;80:50–64. doi: 10.1016/j.semcdb.2017.05.023.
    1. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
    1. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006.
    1. Velasco R., Bruna J. Taxane-Induced Peripheral Neurotoxicity. Toxics. 2015;3:152–169. doi: 10.3390/toxics3020152.
    1. Ludman T., Melemedjian O.K. Bortezomib-induced aerobic glycolysis contributes to chemotherapy-induced painful peripheral neuropathy. Mol. Pain. 2019;15 doi: 10.1177/1744806919837429.
    1. Andrisic L., Dudzik D., Barbas C., Milkovic L., Grune T., Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol. 2018;14:47–58. doi: 10.1016/j.redox.2017.08.009.
    1. Antoncic-Svetina M., Sentija D., Cipak A., Milicic D., Meinitzer A., Tatzber F., Andrisic L., Zelzer S., Zarkovic N. Ergometry induces systemic oxidative stress in healthy human subjects. Tohoku J. Exp. Med. 2010;221:43–48. doi: 10.1620/tjem.221.43.
    1. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell Longev. 2016;2016:1245049. doi: 10.1155/2016/1245049.
    1. Han Y., Smith M.T. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN) Front Pharmacol. 2013;4:156. doi: 10.3389/fphar.2013.00156.
    1. Grisold W., Cavaletti G., Windebank A.J. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro Oncol. 2012;14:iv45–iv54. doi: 10.1093/neuonc/nos203.
    1. Lazic A., Popović J., Paunesku T., Woloschak G.E., Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res. 2020;15:1623–1630.
    1. Velasco R., Santos C., Soler G., Gil-Gil M., Pernas S., Galan M., Palmero R., Bruna J. Serum micronutrients and prealbumin during development and recovery of chemotherapy-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 2016;21:134–141. doi: 10.1111/jns.12177.
    1. Meents J.E., Ciotu C.I., Fischer M.J.M. TRPA1: A molecular view. J. Neurophysiol. 2019;121:427–443. doi: 10.1152/jn.00524.2018.
    1. Trevisan G., Materazzi S., Fusi C., Altomare A., Aldini G., Lodovici M., Patacchini R., Geppetti P., Nassini R. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res. 2013;73:3120–3131. doi: 10.1158/0008-5472.CAN-12-4370.
    1. Shim H.S., Bae C., Wang J., Lee K.H., Hankerd K.M., Kim H.K., Chung J.M., La J.H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol. Pain. 2019;15 doi: 10.1177/1744806919840098.
    1. Miyano K., Shiraishi S., Minami K., Sudo Y., Suzuki M., Yokoyama T., Terawaki K., Nonaka M., Murata H., Higami Y., et al. Carboplatin Enhances the Activity of Human Transient Receptor Potential Ankyrin 1 through the Cyclic AMP-Protein Kinase A-A-Kinase Anchoring Protein (AKAP) Pathways. Int. J. Mol. Sci. 2019;20:3271. doi: 10.3390/ijms20133271.
    1. Nakagawa T., Kaneko S. Roles of Transient Receptor Potential Ankyrin 1 in Oxaliplatin-Induced Peripheral Neuropathy. Biol. Pharm. Bull. 2017;40:947–953. doi: 10.1248/bpb.b17-00243.
    1. Taguchi K. Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy. Yakugaku Zasshi. 2016;136:287–296. doi: 10.1248/yakushi.15-00214.
    1. Boiko N., Medrano G., Montano E., Jiang N., Williams C.R., Madungwe N.B., Bopassa J.C., Kim C.C., Parrish J.Z., Hargreaves K.M., et al. TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids. PLoS ONE. 2017;12:e0186888. doi: 10.1371/journal.pone.0186888.
    1. De Logu F., Trevisan G., Marone I.M., Coppi E., Padilha Dalenogare D., Titiz M., Marini M., Landini L., Souza Monteiro de Araujo D., Li Puma S., et al. Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4. BMC Biol. 2020;18:197. doi: 10.1186/s12915-020-00935-9.
    1. Materazzi S., Fusi C., Benemei S., Pedretti P., Patacchini R., Nilius B., Prenen J., Creminon C., Geppetti P., Nassini R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch. 2012;463:561–569. doi: 10.1007/s00424-011-1071-x.
    1. Miao F., Wang R., Cui G., Li X., Wang T., Li X. Engagement of MicroRNA-155 in Exaggerated Oxidative Stress Signal and TRPA1 in the Dorsal Horn of the Spinal Cord and Neuropathic Pain During Chemotherapeutic Oxaliplatin. Neurotox Res. 2019;36:712–723. doi: 10.1007/s12640-019-00039-5.
    1. Martinez-Sanchez G., Schwartz A., Donna V.D. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants. 2020;9:389. doi: 10.3390/antiox9050389.
    1. Salat K. Chemotherapy-induced peripheral neuropathy-part 2: Focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol. Rep. 2020;72:508–527. doi: 10.1007/s43440-020-00106-1.
    1. Argyriou A.A., Cavaletti G., Briani C., Velasco R., Bruna J., Campagnolo M., Alberti P., Bergamo F., Cortinovis D., Cazzaniga M., et al. Clinical pattern and associations of oxaliplatin acute neurotoxicity: A prospective study in 170 patients with colorectal cancer. Cancer. 2013;119:438–444. doi: 10.1002/cncr.27732.
    1. Krzakowski M., Ramlau R., Jassem J., Szczesna A., Zatloukal P., Von Pawel J., Sun X., Bennouna J., Santoro A., Biesma B., et al. Phase III trial comparing vinflunine with docetaxel in second-line advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy. J. Clin. Oncol. 2010;28:2167–2173. doi: 10.1200/JCO.2009.23.4146.
    1. de Bono J.S., Oudard S., Ozguroglu M., Hansen S., Machiels J.P., Kocak I., Gravis G., Bodrogi I., Mackenzie M.J., Shen L., et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet. 2010;376:1147–1154. doi: 10.1016/S0140-6736(10)61389-X.
    1. LaPointe N.E., Morfini G., Brady S.T., Feinstein S.C., Wilson L., Jordan M.A. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology. 2013;37:231–239. doi: 10.1016/j.neuro.2013.05.008.
    1. Hui K.F., Lam B.H., Ho D.N., Tsao S.W., Chiang A.K. Bortezomib and SAHA synergistically induce ROS-driven caspase-dependent apoptosis of nasopharyngeal carcinoma and block replication of Epstein-Barr virus. Mol. Cancer Ther. 2013;12:747–758. doi: 10.1158/1535-7163.MCT-12-0811.
    1. Ri M. Endoplasmic-reticulum stress pathway-associated mechanisms of action of proteasome inhibitors in multiple myeloma. Int. J. Hematol. 2016;104:273–280. doi: 10.1007/s12185-016-2016-0.
    1. Casafont I., Berciano M.T., Lafarga M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res. 2010;17:167–178. doi: 10.1007/s12640-009-9086-1.
    1. Yamamoto S., Egashira N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2021;22:888. doi: 10.3390/ijms22020888.
    1. Pancheri E., Guglielmi V., Wilczynski G.M., Malatesta M., Tonin P., Tomelleri G., Nowis D., Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers. 2020;12:2540. doi: 10.3390/cancers12092540.
    1. Glimelius B., Manojlovic N., Pfeiffer P., Mosidze B., Kurteva G., Karlberg M., Mahalingam D., Buhl Jensen P., Kowalski J., Bengtson M., et al. Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx((R))): A placebo-controlled randomised phase II study (PLIANT) Acta Oncol. 2018;57:393–402. doi: 10.1080/0284186X.2017.1398836.
    1. Smith E.M.L. Pharmacologic Treatments for Chronic Cancer-Related Pain: Does Anything Work? J. Clin. Oncol. 2019;37:1686–1689. doi: 10.1200/JCO.19.00936.
    1. Viebahn-Hansler R., Leon Fernandez O.S., Fahmy Z. Ozone in Medicine: The Low-Dose Ozone Concept—Guidelines and Treatment Strategies. Ozone Sci. Eng. 2012;34:408–424. doi: 10.1080/01919512.2012.717847.
    1. (ISCO3_(International_Scientific_Committee_of_Ozone_Therapy)) Madrid Declaration on Ozone Therapy. [(accessed on 30 November 2020)]; Available online:
    1. Bocci V.A., Zanardi I., Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J. Transl. Med. 2011;9:66. doi: 10.1186/1479-5876-9-66.
    1. Di Mauro R., Cantarella G., Bernardini R., Di Rosa M., Barbagallo I., Distefano A., Longhitano L., Vicario N., Nicolosi D., Lazzarino G., et al. The Biochemical and Pharmacological Properties of Ozone: The Smell of Protection in Acute and Chronic Diseases. Int. J. Mol. Sci. 2019;20:634. doi: 10.3390/ijms20030634.
    1. Xia Y., Niu Y., Cai J., Lin Z., Liu C., Li H., Chen C., Song W., Zhao Z., Chen R., et al. Effects of Personal Short-Term Exposure to Ambient Ozone on Blood Pressure and Vascular Endothelial Function: A Mechanistic Study Based on DNA Methylation and Metabolomics. Environ. Sci. Technol. 2018;52:12774–12782. doi: 10.1021/acs.est.8b03044.
    1. Galie M., Covi V., Tabaracci G., Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int. J. Mol. Sci. 2019;20:4009. doi: 10.3390/ijms20164009.
    1. Bocci V., Borrelli E., Travagli V., Zanardi I. The ozone paradox: Ozone is a strong oxidant as well as a medical drug. Med. Res. Rev. 2009;29:646–682. doi: 10.1002/med.20150.
    1. Re L., Malcangi G., Martinez-Sanchez G. Medical ozone is now ready for a scientific challenge: Current status and future perspectives. J. Exp. Integr. Med. 2012;2:193–196. doi: 10.5455/jeim.070612.ir.012.
    1. Milkovic L., Cipak Gasparovic A., Zarkovic N. Overview on major lipid peroxidation bioactive factor 4-hydroxynonenal as pluripotent growth-regulating factor. Free Radic. Res. 2015;49:850–860. doi: 10.3109/10715762.2014.999056.
    1. Pecorelli A., Bocci V., Acquaviva A., Belmonte G., Gardi C., Virgili F., Ciccoli L., Valacchi G. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 2013;267:30–40. doi: 10.1016/j.taap.2012.12.001.
    1. Delgado-Roche L., Riera-Romo M., Mesta F., Hernandez-Matos Y., Barrios J.M., Martinez-Sanchez G., Al-Dalaien S.M. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur. J. Pharmacol. 2017;811:148–154. doi: 10.1016/j.ejphar.2017.06.017.
    1. Siniscalco D., Trotta M.C., Brigida A.L., Maisto R., Luongo M., Ferraraccio F., D’Amico M., Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. Biology. 2018;7:10. doi: 10.3390/biology7010010.
    1. Wang L., Chen Z., Liu Y., Du Y., Liu X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des. Devel Ther. 2018;12:1293–1301. doi: 10.2147/DDDT.S164927.
    1. Wu W., Wages P.A., Devlin R.B., Diaz-Sanchez D., Peden D.B., Samet J.M. SRC-mediated EGF receptor activation regulates ozone-induced interleukin 8 expression in human bronchial epithelial cells. Environ. Health Perspect. 2015;123:231–236. doi: 10.1289/ehp.1307379.
    1. Ganesh Yerra V., Negi G., Sharma S.S., Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kappaB pathways in diabetic neuropathy. Redox Biol. 2013;1:394–397. doi: 10.1016/j.redox.2013.07.005.
    1. Oliveira-Marques V., Marinho H.S., Cyrne L., Antunes F. Role of hydrogen peroxide in NF-kappaB activation: From inducer to modulator. Antioxid Redox Signal. 2009;11:2223–2243. doi: 10.1089/ars.2009.2601.
    1. Huth K.C., Saugel B., Jakob F.M., Cappello C., Quirling M., Paschos E., Ern K., Hickel R., Brand K. Effect of aqueous ozone on the NF-kappaB system. J. Dent. Res. 2007;86:451–456. doi: 10.1177/154405910708600512.
    1. Scassellati C., Galoforo A.C., Bonvicini C., Esposito C., Ricevuti G. Ozone: A natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res. Rev. 2020;63:101138. doi: 10.1016/j.arr.2020.101138.
    1. Simonetti V., Quagliariello V., Franzini M., Iaffaioli R.V., Maurea N., Valdenassi L. Ozone Exerts Cytoprotective and Anti-Inflammatory Effects in Cardiomyocytes and Skin Fibroblasts after Incubation with Doxorubicin. Evid. Based Complement. Alternat. Med. 2019;2019:2169103. doi: 10.1155/2019/2169103.
    1. Yu G., Liu X., Chen Z., Chen H., Wang L., Wang Z., Qiu T., Weng X. Ozone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-kappaB. Iran J. Basic Med. Sci. 2016;19:1136–1143.
    1. Lantero A., Tramullas M., Pilar-Cuellar F., Valdizan E., Santillan R., Roques B.P., Hurle M.A. TGF-beta and opioid receptor signaling crosstalk results in improvement of endogenous and exogenous opioid analgesia under pathological pain conditions. J. Neurosci. 2014;34:5385–5395. doi: 10.1523/JNEUROSCI.4405-13.2014.
    1. Tramullas M., Frances R., de la Fuente R., Velategui S., Carcelen M., Garcia R., Llorca J., Hurle M.A. MicroRNA-30c-5p modulates neuropathic pain in rodents. Sci. Transl. Med. 2018;10:453. doi: 10.1126/scitranslmed.aao6299.
    1. Katre A., Ballinger C., Akhter H., Fanucchi M., Kim D.K., Postlethwait E., Liu R.M. Increased transforming growth factor beta 1 expression mediates ozone-induced airway fibrosis in mice. Inhal. Toxicol. 2011;23:486–494. doi: 10.3109/08958378.2011.584919.
    1. He S., Chen W., Xia J., Lai Z., Yu D., Yao J., Cai S. Effects of ozone autohemotherapy on blood VEGF, TGF-beta and PDGF levels after finger replantation. Ann. Palliat Med. 2020;9:3332–3339. doi: 10.21037/apm-20-1467.
    1. Cobos E.J. Micro ARN: ¿una nueva vía para el manejo del dolor neuropático? Rev. Soc. Esp. Dolor. 2019;26:2–3.
    1. Yu M., Zhao Y., Zhang X. Gardenoside combined with ozone inhibits the expression of P2X3 and P2X7 purine receptors in rats with sciatic nerve injury. Mol. Med. Rep. 2018;17:7980–7986. doi: 10.3892/mmr.2018.8803.
    1. Wu M.Y., Xing C.Y., Wang J.N., Li Y., Lin X.W., Fu Z.J. Therapeutic dosage of ozone inhibits autophagy and apoptosis of nerve roots in a chemically induced radiculoneuritis rat model. Eur. Rev. Med. Pharmacol. Sci. 2018;22:1787–1797.
    1. Lu L., Pan C., Chen L., Hu L., Wang C., Han Y., Yang Y., Cheng Z., Liu W.T. AMPK activation by peri-sciatic nerve administration of ozone attenuates CCI-induced neuropathic pain in rats. J. Mol. Cell Biol. 2017;9:132–143. doi: 10.1093/jmcb/mjw043.
    1. Kocak H.E., Taskin U., Aydin S., Oktay M.F., Altinay S., Celik D.S., Yucebas K., Altas B. Effects of ozone (O3) therapy on cisplatin-induced ototoxicity in rats. Eur. Arch. Otorhinolaryngol. 2016;273:4153–4159. doi: 10.1007/s00405-016-4104-4.
    1. Erken H.A., Genc O., Erken G., Ayada C., Gundogdu G., Dogan H. Ozone partially prevents diabetic neuropathy in rats. Exp. Clin. Endocrinol. Diabetes. 2015;123:101–105. doi: 10.1055/s-0034-1389954.
    1. Ogut E., Yildirim F.B., Sarikcioglu L., Aydin M.A., Demir N. Neuroprotective Effects of Ozone Therapy After Sciatic Nerve Cut Injury. Kurume Med. J. 2020;65:137–144. doi: 10.2739/kurumemedj.MS654002.
    1. Clavo B., Navarro M., Federico M., Borrelli E., Jorge I.J., Ribeiro I., Rodriguez-Melcon J.I., Carames M.A., Santana-Rodriguez N., Rodriguez-Esparragon F. Ozone Therapy in Refractory Pelvic Pain Syndromes Secondary to Cancer Treatment: A New Approach Warranting Exploration. J. Palliat. Med. 2021;24:97–102. doi: 10.1089/jpm.2019.0597.
    1. Clavo B., Navarro M., Federico M., Borrelli E., Jorge I.J., Ribeiro I., Rodriguez-Melcon J.I., Carames M.A., Santana-Rodriguez N., Rodriguez-Esparragon F. Long-term results with adjuvant ozone therapy in the management of chronic pelvic pain secondary to cancer treatment. Pain Med. 2021 doi: 10.1093/pm/pnaa459.
    1. Park S.B., Kwok J.B., Asher R., Lee C.K., Beale P., Selle F., Friedlander M. Clinical and genetic predictors of paclitaxel neurotoxicity based on patient- versus clinician-reported incidence and severity of neurotoxicity in the ICON7 trial. Ann. Oncol. 2017;28:2733–2740. doi: 10.1093/annonc/mdx491.
    1. Majithia N., Temkin S.M., Ruddy K.J., Beutler A.S., Hershman D.L., Loprinzi C.L. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: Outcomes and lessons. Support Care Cancer. 2016;24:1439–1447. doi: 10.1007/s00520-015-3063-4.
    1. Clavo B., Santana-Rodriguez N., Llontop P., Gutierrez D., Ceballos D., Mendez C., Rovira G., Suarez G., Rey-Baltar D., Garcia-Cabrera L., et al. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients. Evid. Based Complement. Alternat. Med. 2015;2015:480369. doi: 10.1155/2015/480369.
    1. Clavo B., Ceballos D., Gutierrez D., Rovira G., Suarez G., Lopez L., Pinar B., Cabezon A., Morales V., Oliva E., et al. Long-term control of refractory hemorrhagic radiation proctitis with ozone therapy. J. Pain Symptom. Manag. 2013;46:106–112. doi: 10.1016/j.jpainsymman.2012.06.017.
    1. Clavo B., Santana-Rodriguez N., Llontop P., Gutierrez D., Suarez G., Lopez L., Rovira G., Martinez-Sanchez G., Gonzalez E., Jorge I.J., et al. Ozone Therapy as Adjuvant for Cancer Treatment: Is Further Research Warranted? Evid. Based Complement. Alternat. Med. 2018;2018:7931849. doi: 10.1155/2018/7931849.
    1. Halicek M., Fabelo H., Ortega S., Callico G.M., Fei B. In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer. Cancers. 2019;11:756. doi: 10.3390/cancers11060756.
    1. Ortega S., Halicek M., Fabelo H., Callico G.M., Fei B. Hyperspectral and multispectral imaging in digital and computational pathology: A systematic review [Invited] Biomed. Opt. Express. 2020;11:3195–3233. doi: 10.1364/BOE.386338.
    1. Mordant D.J., Al-Abboud I., Muyo G., Gorman A., Sallam A., Ritchie P., Harvey A.R., McNaught A.I. Spectral imaging of the retina. Eye. 2011;25:309–320. doi: 10.1038/eye.2010.222.
    1. Mori M., Chiba T., Nakamizo A., Kumashiro R., Murata M., Akahoshi T., Tomikawa M., Kikkawa Y., Yoshimoto K., Mizoguchi M., et al. Intraoperative visualization of cerebral oxygenation using hyperspectral image data: A two-dimensional mapping method. Int. J. Comput. Assist Radiol. Surg. 2014;9:1059–1072. doi: 10.1007/s11548-014-0989-9.
    1. Olweny E.O., Faddegon S., Best S.L., Jackson N., Wehner E.F., Tan Y.K., Zuzak K.J., Cadeddu J.A. Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: Characterization using laparoscopic digital light processing hyperspectral imaging. J. Endourol. 2013;27:265–269. doi: 10.1089/end.2012.0207.
    1. Chen Y., Wang Z., Huang Y., Feng S., Zheng Z., Liu X., Liu M. Label-free detection of hydrogen peroxide-induced oxidative stress in human retinal pigment epithelium cells via laser tweezers Raman spectroscopy. Biomed. Opt. Express. 2019;10:500–513. doi: 10.1364/BOE.10.000500.
    1. Datta R., Heylman C., George S.C., Gratton E. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes. Biomed. Opt. Express. 2016;7:1690–1701. doi: 10.1364/BOE.7.001690.
    1. Yan D., Xu W., Yao X., Lin L., Sherman J.H., Keidar M. The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment. Sci. Rep. 2018;8:15418. doi: 10.1038/s41598-018-33914-w.
    1. Rutkowski R., Schuster M., Unger J., Seebauer C., Metelmann H.R., Woedtke T.V., Weltmann K.D., Daeschlein G. Hyperspectral imaging for in vivo monitoring of cold atmospheric plasma effects on microcirculation in treatment of head and neck cancer and wound healing. Clin. Plasma Med. 2017;7-8:52–57. doi: 10.1016/j.cpme.2017.09.002.
    1. Lindqvist D., Dhabhar F.S., James S.J., Hough C.M., Jain F.A., Bersani F.S., Reus V.I., Verhoeven J.E., Epel E.S., Mahan L., et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology. 2017;76:197–205. doi: 10.1016/j.psyneuen.2016.11.031.
    1. Maes M., Galecki P., Chang Y.S., Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011;35:676–692.
    1. Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034.
    1. Stefanatos R., Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 2018;592:743–758. doi: 10.1002/1873-3468.12902.
    1. Bakunina N., Pariante C.M., Zunszain P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144:365–373. doi: 10.1111/imm.12443.
    1. Bhatt S., Nagappa A.N., Patil C.R. Role of oxidative stress in depression. Drug Discov. Today. 2020;25:1270–1276. doi: 10.1016/j.drudis.2020.05.001.

Source: PubMed

3
Subscribe