Nrf2 activation as target to implement therapeutic treatments

Velio Bocci, Giuseppe Valacchi, Velio Bocci, Giuseppe Valacchi

Abstract

A chronic increase of oxidative stress is typical of serious pathologies such as myocardial infarction, stroke, chronic limb ischemia, chronic obstructive pulmonary disease (COPD), type II-diabetes, age-related macular degeneration leads to an epic increase of morbidity and mortality in all countries of the world. The initial inflammation followed by an excessive release of reactive oxygen species (ROS) implies a diffused cellular injury that needs to be corrected by an inducible expression of the innate detoxifying and antioxidant system. The transcription factor Nrf2, when properly activated, is able to restore a redox homeostasis and possibly improve human health.

Keywords: antioxidants; calorie restriction; oxidative stress; ozone; pathologies.

Figures

Figure 1
Figure 1
The use of alternative approaches, such as caloric restriction, exercise and healthy diet, together with the conventional medical treatments, could be useful to help patients restore and maintain their healthy physiological state. The homeostasis between the oxidant and antioxidant species is frequently perturbed in a number of human pathological conditions. Hence, the integrative approaches, able to re-establish the redox balance, could play a key role in restoring the cellular homeostasis and reduce the side effects of the orthodox medicine.

References

    1. Adam J., Hatipoglu E., O'Flaherty L., Ternette N., Sahgal N., Lockstone H., et al. . (2011). Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell. 20, 524–537. 10.1016/j.ccr.2011.09.006
    1. Alary J., Bravais F., Cravedi J. P., Debrauwer L., Rao D., Bories G. (1995). Mercapturic acid conjugates as urinary end metabolites of the lipid peroxidation product 4-hydroxy-2-nonenal in the rat. Chem. Res. Toxicol. 8, 34–39. 10.1021/tx00043a004
    1. Antunes F., Cadenas E. (2000). Estimation of H2O2 gradients across biomembranes. FEBS Lett. 475, 121–126. 10.1016/S0014-5793(00)01638-0
    1. Awasthi Y. C., Yang Y., Tiwari N. K., Patrick B., Dharma A., Li J., et al. . (2004). Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radic. Biol. Med. 37, 607–619. 10.1016/j.freeradbiomed.2004.05.033
    1. Barbano R., Muscarella L. A., Pasculli B., Valori V. M., Fontana A., Coco M., et al. . (2013). Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 8, 105–112. 10.4161/epi.23319
    1. Baur J. A., Sinclaire D. A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5, 493–506. 10.1038/nrd2060
    1. Bocci V. (2006). Scientific and medical aspects of ozone therapy. Archiv. Med. Res. 37, 425–435. 10.1016/j.arcmed.2005.08.006
    1. Bocci V., Aldinucci C. (2006). Biochemical modifications induced in human blood by oxygenation-ozonation. J. Biochem. Mol. Toxicol. 20, 133–138. 10.1002/jbt.20124
    1. Bocci V., Borrelli E., Travagli V., Zanardi I. (2009a). The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med. Res. Rev. 29, 646–682. 10.1002/med.20150
    1. Bocci V., Valacchi G. (2013). Free radicals and antioxidants: how to re-establish redox homeostasis in chronic diseases? Curr. Med. Chem. 27, 3397–3415. 10.2174/0929867311320270005
    1. Bocci V., Zanardi I., Michaeli D., Travagli V. (2009b). Mechanisms of action and chemical-biological interactions between ozone and body compartments: a critical appraisal of the different administration routes. Curr. Drug Ther. 4, 159–173 10.2174/157488509789055045
    1. Bocci V., Zanardi I., Travagli V. (2010). Potentiality of oxygen-ozonetherapy to improve the health of aging people. Curr. Aging Sci. 3, 177–187. 10.2174/1874609811003030177
    1. Bocci V., Zanardi I., Travagli V. (2011a). Ozone: a new therapeutic agent in vascular diseases. Am. J. Cardiovasc. Drugs 11, 73–82. 10.2165/11539890-000000000-00000
    1. Bocci V., Zanardi I., Travagli V. (2011b). Ozone acting on human blood yields a hormetic dose-response relationship. J. Transl. Med. 9, 66–77. 10.1186/1479-5876-9-66
    1. Borrelli E., Bocci V. (2014). Oxygen ozone therapy in the treatment of chronic obstructive pulmonary disease: an integrative approach. Am. J. Clin. Exp. Med. 2, 9–13 10.11648/j.ajcem.20140202.11
    1. Calabrese E. J. (2013). Hormetic mechanisms. Crit. Rev. Toxicol. 43, 580–606. 10.3109/10408444.2013.808172
    1. Calvert J. W., Jha S., Gundewar S., Elrod J. W., Ramachandran A., Pattillo C. B., et al. . (2009). Hydrogen sulphide mediates cardiprotection through Nrf2 signaling. Circ. Res. 105, 365–374. 10.1161/CIRCRESAHA.109.199919
    1. Cohen H. Y., Miller C., Bitterman K. J., Wall N. R., Hekking B., Kessler B., et al. . (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392. 10.1126/science.1099196
    1. de Lemos E. T., Oliveira J., Pinheiro J. P., Reis F. (2012). Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxid. Med. Cell. Longev. 2012, 741545. 10.1155/2012/741545
    1. Di Paolo N., Bocci V., Salvo D. P., Palasciano G., Biagioli M., Meini D., et al. . (2005). Extracorporeal blood oxygenation and ozonation (EBOO): a controlled trial in patients with peripheral artery disease. Int. J. Artif. Organs 28, 1039–1050.
    1. Feldman E. L. (2003). Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J. Clin. Invest. 111, 431–433. 10.1172/JCI200317863
    1. Finley J. W., Sigrid-Keck A., Robbins R. J., Hintze K. J. (2005). Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds. J. Nutr. 135, 1236–1238.
    1. Fontana L. (2008). Calorie restriction and cardiometabolic health. Eur. J. Cardivasc. Prev. Rehabil. 15, 3–9. 10.1097/HJR.0b013e3282f17bd4
    1. Fontana L. (2009). The scientific basis of calorie restriction leading to longer life. Curr. Opin. Gastroenterol. 25, 144–150. 10.1097/MOG.0b013e32831ef1ba
    1. Fontana L., Meyer T. E., Klein S., Holloszy J. O. (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 6659–6663. 10.1073/pnas.0308291101
    1. Gañán-Gómez I., Wei Y., Yang H., Boyano-Adánez M. C., García-Manero G. (2013). Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med. 65, 750–764. 10.1016/j.freeradbiomed.2013.06.041
    1. Gill R., Tsung A., Billiar T. (2010). Linking oxidative stress to inflammation: toll-like receptors. Free Radic. Biol. Med. 48, 1121–1132. 10.1016/j.freeradbiomed.2010.01.006
    1. Godman C. A., Chheda K. P., Hightower L. E., Perdrizet G., Shin D. G., Giardina C. (2010). Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15, 431–442. 10.1007/s12192-009-0159-0
    1. Goodman A. I., Choudhury M., da Silva J. L., Schwartzman M. L., Abraham N. G. (1997). Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc. Soc. Exp. Biol. Med. 214, 54–61. 10.3181/00379727-214-44069
    1. Gupta S. C., Patchva S., Koh W., Aggarwal B. B. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 39, 283–299. 10.1111/j.1440-1681.2011.05648.x
    1. Hanada N., Takahata T., Zhou Q., Ye X., Sun R., Itoh J., et al. . (2012). Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 12:66. 10.1186/1471-2407-12-66
    1. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., et al. . (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322. 10.1006/bbrc.1997.6943
    1. Jung K. A., Kwak M. K. (2010). The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15, 7266–7291. 10.3390/molecules15107266
    1. Kanfi Y., Naiman S., Amir G., Peshti V., Zinman G., Nahum L., et al. . (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221. 10.1038/nature10815
    1. Kanfi Y., Shalman R., Peshti V., Pilosof S. N., Gozlan Y. M., Pearson K. J., et al. . (2008). Regulation of SIRT6 protein level by nutrient availability. FEBS Lett. 582, 543–548. 10.1016/j.febslet.2008.01.019
    1. Kang C., O'Moore K. M., Dickman J. R., Ji L. L. (2009). Exercise activation of muscle proxisome proliferators-activated receptor-gamma coactivator-1 alpha signalling is redox sensitive. Free Radic. Biol. Med. 47, 1394–1400. 10.1016/j.freeradbiomed.2009.08.007
    1. Kensler T. W., Wakabayashi N., Biswal S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116. 10.1146/annurev.pharmtox.46.120604.141046
    1. Kim Y. R., Oh J. E., Kim M. S., Kang M. R., Park S. W., Han J. Y., et al. . (2010). Oncogenic Nrf2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220, 446–451. 10.1002/path.2653
    1. Knowles R. G., Moncada S. (1992). Nitric oxide as a signal in blood vessels. Trends Biochem. Sci. 17, 399–402. 10.1016/0968-0004(92)90008-W
    1. Lau A., Tian W., Whitman S. A., Zhang D. D. (2013). The predicted molecular weight of Nrf2: it is what is not. Antioxid. Redox Signal. 18, 91–93. 10.1089/ars.2012.4754
    1. Laurent A., Alary J., Debrauwer L., Cravedi J. P. (1999). Analysisin the rat of 4- hydroxynonenal metabolites excreted in bile: evidence of enterohepatic circulation of these byproducts of lipid peroxidation. Chem. Res. Toxicol. 12, 887–894. 10.1021/tx9900425
    1. Levine R. L. (2002). Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic. Biol. Med. 32, 790–796. 10.1016/S0891-5849(02)00765-7
    1. Li L., Duker J. S., Yoshida Y., Niki E., Rasmussen H., Russell R. M. (2009). Oxidative stress and antioxidant status in older adults with early cataract. Eye (Lond.) 23, 1464–1468. 10.1038/eye.2008.281
    1. Little J. P., Safdar A., Cermak N., Tarnopolsky M. A., Gibala M. J. (2010). Acute endurance exercise increases the nuclear abundance of PGC-1 alpha in trained human skeketal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R912–R917. 10.1152/ajpregu.00409.2009
    1. Long E. K., Picklo M. J., Sr. (2010). Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic. Biol. Med. 49, 1–8. 10.1016/j.freeradbiomed.2010.03.015
    1. Maines M. D., Abrahamsson P. A. (1996). Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 47, 727–733. 10.1016/S0090-4295(96)00010-6
    1. Mendiratta S., Qu Z. C., May J. M. (1998). Erythrocytes ascorbate recycling: antioxidant effects in blood. Free Radic. Biol. Med. 24, 789–797. 10.1016/S0891-5849(97)00351-1
    1. Moi P., Chan K., Asunis I., Cao A., Kan Y. W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. U.S.A. 91, 9926–9930. 10.1073/pnas.91.21.9926
    1. Motohashi H., Yamamoto M. (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549–557. 10.1016/j.molmed.2004.09.003
    1. Muscarella L. A., Barbano R., D'Angelo V., Copetti M., Coco M., Balsamo T., et al. . (2011). Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 6, 317–325. 10.4161/epi.6.3.14408
    1. Muthusamy V. R., Kannan S., Sadhaasivam K., Gounder S. S., Davidson C. J., Boeheme C., et al. . (2012). Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic. Biol. Med. 52, 366–376. 10.1016/j.freeradbiomed.2011.10.440
    1. Nakao A., Sugimoto R., Billiar T. R., McCurry K. R. (2009). Therapeutic antioxidant medical gas. J. Clin. Biochem. Sci. 17, 1–13. 10.3164/jcbn.08-193R
    1. No J. H., Kim Y. B., Song Y. S. (2014). Targeting nrf2 signaling to combat chemoresistance. J. Cancer Prev. 19, 111–117. 10.15430/JCP.2014.19.2.111
    1. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., et al. . (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694. 10.1038/nm1577
    1. Pannen B. H., Kohler N., Hole B., Bauer M., Clemens M. G., Geiger K. K. (1998). Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats. J. Clin. Invest. 102, 1220–1228. 10.1172/JCI3428
    1. Pecorelli A., Bocci V., Acquaviva A., Belmonte G., Gardi C., Virgili F., et al. . (2013). Nrf2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 267, 30–40. 10.1016/j.taap.2012.12.001
    1. Pryor W. A., Squadrito G. L., Friedman M. (1995). The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic. Biol. Med. 19, 935–941. 10.1016/0891-5849(95)02033-7
    1. Sack M. N. (2012). The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. J. Mol. Cell. Cardiol. 52, 520–525. 10.1016/j.yjmcc.2011.11.004
    1. Sagai M., Bocci V. (2011). Mechanisms of action involved in ozone therapy: is healing induced via a mild oxidative stress? Med. Gas Res. 1, 29–45. 10.1186/2045-9912-1-29
    1. Soejima Y., Ostrowski R. P., Manaenko A., Fujii M., Tang J., Zhang J. H. (2012). Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats. Med. Gas Res. 2:9. 10.1186/2045-9912-2-9
    1. Suzuki T., Motohashi H., Yamamoto M. (2013). Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 34, 340–346. 10.1016/j.tips.2013.04.005
    1. Talalay P., Fahey J. W., Holtzclaw W. D., Prestera T., Zhang Y. (1995). Chemoprotection against cancer by phase 2 enzyme induction. Toxicol. Lett. 82–83, 173–179. 10.1016/0378-4274(95)03553-2
    1. Travagli V., Canard I., Silvietti A., Bocci V. (2007). A physicochemical investigation on the effects of ozone on blood. Int. J. Biol. Macromol. 41, 504–511. 10.1016/j.ijbiomac.2007.06.010
    1. Ungvari Z., Parrado-Fernandez C., Csiszar A., de Cabo R. (2008). Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ. Res. 102, 519–528. 10.1161/CIRCRESAHA.107.168369
    1. Valacchi G., Bocci V. (1999). Studies on the biological effects of ozone: 10. Release of factors from ozonated human platelets. Mediators Inflamm. 8, 205–209. 10.1080/09629359990360
    1. Valacchi G., Bocci V. (2000). Studies on the biological effects of ozone: 11. Release of factors from human endothelial cells. Mediators Inflamm. 9, 271–276. 10.1080/09629350020027573
    1. Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84. 10.1016/j.biocel.2006.07.001
    1. Wang X. J., Sun Z., Villeneuve N. F., Zhang S., Zhao F., Li Y., et al. . (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235–1243. 10.1093/carcin/bgn095
    1. Xu J., Huang G., Zhang K., Sun J., Xu T., Li R., et al. . (2014). Nrf2 activation in astrocytes contributes to spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning. J. Neurotrauma 31, 1343–1353. 10.1089/neu.2013.3222
    1. Yang C. M., Huang S. M., Liu C. L., Hu M. L. (2012). Apo-8′-lycopenal induces expression of HO-1 and NQO-1 via the ERK/p38-Nrf2-ARE pathway in human HepG2 cells. J. Agric. Food Chem. 60, 1576–1585. 10.1021/jf204451n
    1. Yang Y. C., Lii C. K., Lin A. H., Yeh Y. W., Yao H. T., Li C. C., et al. . (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic. Biol. Med. 51, 2073–2081. 10.1016/j.freeradbiomed.2011.09.007
    1. Zhang D. D. (2010). The Nrf2-Keap1-ARE signaling pathway: the regulation and dual function of Nrf2 in cancer. Antioxid. Redox Signal. 13, 1623–1626. 10.1089/ars.2010.3301

Source: PubMed

3
Subscribe