CMR Tissue Characterization in Patients with HFmrEF

Patrick Doeblin, Djawid Hashemi, Radu Tanacli, Tomas Lapinskas, Rolf Gebker, Christian Stehning, Laura Astrid Motzkus, Moritz Blum, Elvis Tahirovic, Aleksandar Dordevic, Robin Kraft, Seyedeh Mahsa Zamani, Burkert Pieske, Frank Edelmann, Hans-Dirk Düngen, Sebastian Kelle, Patrick Doeblin, Djawid Hashemi, Radu Tanacli, Tomas Lapinskas, Rolf Gebker, Christian Stehning, Laura Astrid Motzkus, Moritz Blum, Elvis Tahirovic, Aleksandar Dordevic, Robin Kraft, Seyedeh Mahsa Zamani, Burkert Pieske, Frank Edelmann, Hans-Dirk Düngen, Sebastian Kelle

Abstract

The characteristics and optimal management of heart failure with a moderately reduced ejection fraction (HFmrEF, LV-EF 40-50%) are still unclear. Advanced cardiac MRI offers information about function, fibrosis and inflammation of the myocardium, and might help to characterize HFmrEF in terms of adverse cardiac remodeling. We, therefore, examined 17 patients with HFpEF, 18 with HFmrEF, 17 with HFrEF and 17 healthy, age-matched controls with cardiac MRI (Phillips 1.5 T). T1 and T2 relaxation time mapping was performed and the extracellular volume (ECV) was calculated. Global circumferential (GCS) and longitudinal strain (GLS) were derived from cine images. GLS (-15.7 ± 2.1) and GCS (-19.9 ± 4.1) were moderately reduced in HFmrEF, resembling systolic dysfunction. Native T1 relaxation times were elevated in HFmrEF (1027 ± 40 ms) and HFrEF (1033 ± 54 ms) compared to healthy controls (972 ± 31 ms) and HFpEF (985 ± 32 ms). T2 relaxation times were elevated in HFmrEF (55.4 ± 3.4 ms) and HFrEF (56.0 ± 6.0 ms) compared to healthy controls (50.6 ± 2.1 ms). Differences in ECV did not reach statistical significance. HFmrEF differs from healthy controls and shares similarities with HFrEF in cardiac MRI parameters of fibrosis and inflammation.

Keywords: ECV, fibrosis; HFmrEF; T1 mapping; T2 mapping; inflammation; strain.

Conflict of interest statement

P.D. received a travel grant from Biotronic and owns stock of Siemens AG and Bayer AG. P.D., D.H., T.L., S.K., F.E., H.-D.D. and B.P. received support from the DZHK (German Centre for Cardiovascular Research). C.S. is an employee of Philips Healthcare. B.P. has received advisory board and lecture honoraria from Bayer Healthcare, Novartis, Merck Sharp and Dohme, Stealth Peptides, Sanofi and Servier. F.E. has received advisory board and lecture honoraria from Boehringer Ingelheim, Bayer Healthcare, Novartis, Merck Sharp and Dohme, Vifor, and Servier. H.-D.D. received advisory board honoraria from Bayer, Novartis, Stealt and Berlin Cures. S.K. was supported by an unrestricted research grant from Philips Health Care. All other authors declare that they have no financial or non-financial competing interest to disclose.

Figures

Figure 1
Figure 1
Exemplary medial short axis images of T2 relaxation time maps (first row, (AD)), T1 relaxation time maps (second row, EH) and extracellular volume (ECV) maps (third row, (IL)). First column (A,E,I): Healthy control (ECV image from a patient from clinical routine, as no contrast agent was given to healthy controls in our study). Second column (B,F,J): Patient number 3 (HFpEF). Third column (C,G,K): Patient number 9 (HFmrEF). Fourth column (D,H,L): Patient number 11 (HFrEF). Segments with scars excluded from analysis. ECV = Extracellular volume. HFmrEF = Heart failure with moderately reduced Ejection fraction, HFpEF = Heart failure with preserved ejection fraction, HFrEF = Heart failure with reduced ejection fraction.
Figure 2
Figure 2
Boxplots of heart failure groups and controls versus (A) T2 relaxation time, (B) Native T1 relaxation time, (C) ECV (controls from Dabir et al. 2014) [14], (D) GLS, (E) GCS and (F) strain ratio (GLS/GCS). * Significant at α = 0.05. ** Significant at α = 0.01. n.s. = not significant at 0.05. GCS = global circumferential strain, GLS = global longitudinal strain. Other abbreviations as in Figure 1.
Figure 3
Figure 3
Scatter Plots and linear model parameters of T2 relaxation time versus (A) NT-proBNP (logarithmic scale), (B) glomerular filtration rate (GFR) and (C) 6 min walking test. (D) Scatter plot and Spearman’s correlation coefficient of T2 relaxation time versus quality of life, as assessed by the Minnesota Living with Heart Failure Questionnaire.

References

    1. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J., Falk V., Gonzalez-Juanatey J.R., Harjola V.P., Jankowska E.A., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016;18:891–975. doi: 10.1002/ejhf.592.
    1. Cohn J.N., Ferrari R., Sharpe N. Cardiac remodeling—Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 2000;35:569–582. doi: 10.1016/S0735-1097(99)00630-0.
    1. Zheng S.L., Chan F.T., Nabeebaccus A.A., Shah A.M., McDonagh T., Okonko D.O., Ayis S. Drug treatment effects on outcomes in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Heart. 2018;104:407–415. doi: 10.1136/heartjnl-2017-311652.
    1. Altaie S., Khalife W. The prognosis of mid-range ejection fraction heart failure: A systematic review and meta-analysis. ESC Heart Fail. 2018;5:1008–1016. doi: 10.1002/ehf2.12353.
    1. Messroghli D.R., Moon J.C., Ferreira V.M., Grosse-Wortmann L., He T., Kellman P., Mascherbauer J., Nezafat R., Salerno M., Schelbert E.B., et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) J. Cardiovasc. Magn. Reson. 2017;19:75. doi: 10.1186/s12968-017-0389-8.
    1. Ugander M., Oki A.J., Hsu L.Y., Kellman P., Greiser A., Aletras A.H., Sibley C.T., Chen M.Y., Bandettini W.P., Arai A.E. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur. Heart J. 2012;33:1268–1278. doi: 10.1093/eurheartj/ehr481.
    1. Puntmann V.O., Carr-White G., Jabbour A., Yu C.Y., Gebker R., Kelle S., Hinojar R., Doltra A., Varma N., Child N., et al. T1-Mapping and Outcome in Nonischemic Cardiomyopathy: All-Cause Mortality and Heart Failure. JACC. 2016;9:40–50. doi: 10.1016/j.jcmg.2015.12.001.
    1. Schelbert E.B., Piehler K.M., Zareba K.M., Moon J.C., Ugander M., Messroghli D.R., Valeti U.S., Chang C.C., Shroff S.G., Diez J., et al. Myocardial Fibrosis Quantified by Extracellular Volume Is Associated With Subsequent Hospitalization for Heart Failure, Death, or Both Across the Spectrum of Ejection Fraction and Heart Failure Stage. J. Am. Heart Assoc. 2015;4:e002613. doi: 10.1161/JAHA.115.002613.
    1. Bohnen S., Radunski U.K., Lund G.K., Kandolf R., Stehning C., Schnackenburg B., Adam G., Blankenberg S., Muellerleile K. Performance of t1 and t2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent-onset heart failure. Circ. Cardiovasc. Imaging. 2015;8:e003073. doi: 10.1161/CIRCIMAGING.114.003073.
    1. Scatteia A., Baritussio A., Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Fail. Rev. 2017;22:465–476. doi: 10.1007/s10741-017-9621-8.
    1. DRKS-German Clinical Trials Register DRKS00015615. [(accessed on 10 September 2019)]; Available online: .
    1. Messroghli D.R., Radjenovic A., Kozerke S., Higgins D.M., Sivananthan M.U., Ridgway J.P. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 2004;52:141–146. doi: 10.1002/mrm.20110.
    1. Baessler B., Schaarschmidt F., Stehning C., Schnackenburg B., Maintz D., Bunck A.C. Cardiac T2-mapping using a fast gradient echo spin echo sequence-first in vitro and in vivo experience. J. Cardiovasc. Magn. Reson. 2015;17:67. doi: 10.1186/s12968-015-0177-2.
    1. Dabir D., Child N., Kalra A., Rogers T., Gebker R., Jabbour A., Plein S., Yu C.Y., Otton J., Kidambi A., et al. Reference values for healthy human myocardium using a T1 mapping methodology: Results from the International T1 Multicenter cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2014;16:69. doi: 10.1186/s12968-014-0069-x.
    1. Suinesiaputra A., Bluemke D.A., Cowan B.R., Friedrich M.G., Kramer C.M., Kwong R., Plein S., Schulz-Menger J., Westenberg J.J., Young A.A., et al. Quantification of LV function and mass by cardiovascular magnetic resonance: Multi-center variability and consensus contours. J. Cardiovasc. Magn. Reson. 2015;17:63. doi: 10.1186/s12968-015-0170-9.
    1. aus dem Siepen F., Buss S.J., Messroghli D., Andre F., Lossnitzer D., Seitz S., Keller M., Schnabel P.A., Giannitsis E., Korosoglou G., et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: Quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur. Heart J. Cardiovasc. Imaging. 2015;16:210–216. doi: 10.1093/ehjci/jeu183.
    1. Lurz P., Luecke C., Eitel I., Fohrenbach F., Frank C., Grothoff M., de Waha S., Rommel K.P., Lurz J.A., Klingel K., et al. Comprehensive Cardiac Magnetic Resonance Imaging in Patients With Suspected Myocarditis: The MyoRacer-Trial. J. Am. Coll. Cardiol. 2016;67:1800–1811. doi: 10.1016/j.jacc.2016.02.013.
    1. Mordi I., Carrick D., Bezerra H., Tzemos N. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur. Heart J. Cardiovasc. Imaging. 2016;17:797–803. doi: 10.1093/ehjci/jev216.
    1. Rommel K.P., von Roeder M., Latuscynski K., Oberueck C., Blazek S., Fengler K., Besler C., Sandri M., Lucke C., Gutberlet M., et al. Extracellular Volume Fraction for Characterization of Patients With Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2016;67:1815–1825. doi: 10.1016/j.jacc.2016.02.018.
    1. Roy C., Slimani A., de Meester C., Amzulescu M., Pasquet A., Vancraeynest D., Beauloye C., Vanoverschelde J.L., Gerber B.L., Pouleur A.C. Associations and prognostic significance of diffuse myocardial fibrosis by cardiovascular magnetic resonance in heart failure with preserved ejection fraction. J. Cardiovasc. Magn. Reson. 2018;20:55. doi: 10.1186/s12968-018-0477-4.
    1. Duca F., Kammerlander A.A., Zotter-Tufaro C., Aschauer S., Schwaiger M.L., Marzluf B.A., Bonderman D., Mascherbauer J. Interstitial Fibrosis, Functional Status, and Outcomes in Heart Failure With Preserved Ejection Fraction: Insights From a Prospective Cardiac Magnetic Resonance Imaging Study. Circ. Cardiovasc. Imaging. 2016;9:e005277. doi: 10.1161/CIRCIMAGING.116.005277.
    1. Su M.Y., Lin L.Y., Tseng Y.H., Chang C.C., Wu C.K., Lin J.L., Tseng W.Y. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc. Imaging. 2014;7:991–997. doi: 10.1016/j.jcmg.2014.04.022.
    1. Schelbert E.B., Fridman Y., Wong T.C., Abu Daya H., Piehler K.M., Kadakkal A., Miller C.A., Ugander M., Maanja M., Kellman P., et al. Temporal Relation Between Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction: Association With Baseline Disease Severity and Subsequent Outcome. JAMA Cardiol. 2017;2:995–1006. doi: 10.1001/jamacardio.2017.2511.
    1. Kawel-Boehm N., Maceira A., Valsangiacomo-Buechel E.R., Vogel-Claussen J., Turkbey E.B., Williams R., Plein S., Tee M., Eng J., Bluemke D.A. Normal values for cardiovascular magnetic resonance in adults and children. J. Cardiovasc. Magn. Reson. 2015;17:29. doi: 10.1186/s12968-015-0111-7.
    1. Butler J., Fonarow G.C., Zile M.R., Lam C.S., Roessig L., Schelbert E.B., Shah S.J., Ahmed A., Bonow R.O., Cleland J.G., et al. Developing therapies for heart failure with preserved ejection fraction: Current state and future directions. JACC Heart Fail. 2014;2:97–112. doi: 10.1016/j.jchf.2013.10.006.
    1. Solomon S.D., McMurray J.J.V., Anand I.S., Ge J., Lam C.S.P., Maggioni A.P., Martinez F., Packer M., Pfeffer M.A., Pieske B., et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019;381:65–72. doi: 10.1056/NEJMoa1908655.
    1. Baessler B., Schaarschmidt F., Stehning C., Schnackenburg B., Maintz D., Bunck A.C. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. Eur. J. Radiol. 2015;84:2161–2170. doi: 10.1016/j.ejrad.2015.08.002.
    1. Thavendiranathan P., Walls M., Giri S., Verhaert D., Rajagopalan S., Moore S., Simonetti O.P., Raman S.V. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ. Cardiovasc. Imaging. 2012;5:102–110. doi: 10.1161/CIRCIMAGING.111.967836.
    1. Nishii T., Kono A.K., Shigeru M., Takamine S., Fujiwara S., Kyotani K., Aoyama N., Sugimura K. Cardiovascular magnetic resonance T2 mapping can detect myocardial edema in idiopathic dilated cardiomyopathy. Int. J. Cardiovasc. Imaging. 2014;30:65–72. doi: 10.1007/s10554-014-0414-z.
    1. Verhaert D., Thavendiranathan P., Giri S., Mihai G., Rajagopalan S., Simonetti O.P., Raman S.V. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc. Imaging. 2011;4:269–278. doi: 10.1016/j.jcmg.2010.09.023.
    1. Dick S.A., Epelman S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ. Res. 2016;119:159–176. doi: 10.1161/CIRCRESAHA.116.308030.
    1. Mordi I.R., Singh S., Rudd A., Srinivasan J., Frenneaux M., Tzemos N., Dawson D.K. Comprehensive Echocardiographic and Cardiac Magnetic Resonance Evaluation Differentiates Among Heart Failure With Preserved Ejection Fraction Patients, Hypertensive Patients, and Healthy Control Subjects. JACC Cardiovasc. Imaging. 2018;11:577–585. doi: 10.1016/j.jcmg.2017.05.022.
    1. DeVore A.D., McNulty S., Alenezi F., Ersboll M., Vader J.M., Oh J.K., Lin G., Redfield M.M., Lewis G., Semigran M.J., et al. Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: Insights from the RELAX trial. Eur. J. Heart Fail. 2017;19:893–900. doi: 10.1002/ejhf.754.
    1. Obokata M., Nagata Y., Wu V.C., Kado Y., Kurabayashi M., Otsuji Y., Takeuchi M. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain. Eur. Heart J. Cardiovasc. Imaging. 2016;17:525–532. doi: 10.1093/ehjci/jev227.
    1. Hamatani Y., Nagai T., Shiraishi Y., Kohsaka S., Nakai M., Nishimura K., Kohno T., Nagatomo Y., Asaumi Y., Goda A., et al. Long-Term Prognostic Significance of Plasma B-Type Natriuretic Peptide Level in Patients With Acute Heart Failure With Reduced, Mid-Range, and Preserved Ejection Fractions. Am. J. Cardiol. 2018;121:731–738. doi: 10.1016/j.amjcard.2017.12.012.
    1. Guisado-Espartero M.E., Salamanca-Bautista P., Aramburu-Bodas O., Conde-Martel A., Arias-Jimenez J.L., Llacer-Iborra P., Davila-Ramos M.F., Cabanes-Hernandez Y., Manzano L., Montero-Perez-Barquero M., et al. Heart failure with mid-range ejection fraction in patients admitted to internal medicine departments: Findings from the RICA Registry. Int. J. Cardiol. 2018;255:124–128. doi: 10.1016/j.ijcard.2017.07.101.
    1. Lauritsen J., Gustafsson F., Abdulla J. Characteristics and long-term prognosis of patients with heart failure and mid-range ejection fraction compared with reduced and preserved ejection fraction: A systematic review and meta-analysis. ESC Heart Fail. 2018;4:685–694. doi: 10.1002/ehf2.12283.
    1. Choi K.H., Lee G.Y., Choi J.O., Jeon E.S., Lee H.Y., Cho H.J., Lee S.E., Kim M.S., Kim J.J., Hwang K.K., et al. Outcomes of de novo and acute decompensated heart failure patients according to ejection fraction. Heart. 2018;104:525–532. doi: 10.1136/heartjnl-2017-311813.
    1. Farmakis D., Simitsis P., Bistola V., Triposkiadis F., Ikonomidis I., Katsanos S., Bakosis G., Hatziagelaki E., Lekakis J., Mebazaa A., et al. Acute heart failure with mid-range left ventricular ejection fraction: Clinical profile, in-hospital management, and short-term outcome. Clin. Res. Cardiol. 2017;106:359–368. doi: 10.1007/s00392-016-1063-0.

Source: PubMed

3
Subscribe