Can the Skeletal Muscle Carnosine Response to Beta-Alanine Supplementation Be Optimized?

Pedro Perim, Felipe Miguel Marticorena, Felipe Ribeiro, Gabriel Barreto, Nathan Gobbi, Chad Kerksick, Eimear Dolan, Bryan Saunders, Pedro Perim, Felipe Miguel Marticorena, Felipe Ribeiro, Gabriel Barreto, Nathan Gobbi, Chad Kerksick, Eimear Dolan, Bryan Saunders

Abstract

Carnosine is an abundant histidine-containing dipeptide in human skeletal muscle and formed by beta-alanine and L-histidine. It performs various physiological roles during exercise and has attracted strong interest in recent years with numerous investigations focused on increasing its intramuscular content to optimize its potential ergogenic benefits. Oral beta-alanine ingestion increases muscle carnosine content although large variation in response to supplementation exists and the amount of ingested beta-alanine converted into muscle carnosine appears to be low. Understanding of carnosine and beta-alanine metabolism and the factors that influence muscle carnosine synthesis with supplementation may provide insight into how beta-alanine supplementation may be optimized. Herein we discuss modifiable factors that may further enhance the increase of muscle carnosine in response to beta-alanine supplementation including, (i) dose; (ii) duration; (iii) beta-alanine formulation; (iv) dietary influences; (v) exercise; and (vi) co-supplementation with other substances. The aim of this narrative review is to outline the processes involved in muscle carnosine metabolism, discuss theoretical and mechanistic modifiable factors which may optimize the muscle carnosine response to beta-alanine supplementation and to make recommendations to guide future research.

Keywords: buffering; metabolism; modifying factors; muscle carnosine content; optimizing supplementation.

Figures

Figure 1
Figure 1
Metabolism of muscle carnosine. Created with BioRender.
Figure 2
Figure 2
Factors which may modify the increases in muscle carnosine content with beta-alanine supplementation. Created with BioRender.

References

    1. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. . The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. (2006) 30:279–89. 10.1007/s00726-006-0299-9
    1. Boldyrev AA. Does carnosine possess direct antioxidant activity? Int J Biochem. (1993) 25:1101–7. 10.1016/0020-711X(93)90587-5
    1. Boldyrev AA, Dudina EI, Dupin AM, Chasovnikova LV, Formaziuk VE, Sergienko VI, et al. . [A comparison of the antioxidative activity of carnosine by using chemical and biological models]. Biull Eksp Biol Med. (1993) 115:607–9. 10.1007/BF00791156
    1. Boldyrev AA, Koldobski A, Kurella E, Maltseva V, Stvolinski S. Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. A biomedical aspect. Mol Chem Neuropathol. (1993) 19:185–92. 10.1007/BF03160178
    1. Carvalho VH, Oliveira AHS, de Oliveira LF, da Silva RP, Di Mascio P, Gualano B, et al. . Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biol. (2018) 18:222–8. 10.1016/j.redox.2018.07.009
    1. Hipkiss AR, Brownson C. A possible new role for the anti-ageing peptide carnosine. Cell Mol Life Sci. (2000) 57:747–53. 10.1007/s000180050039
    1. Dutka TL, Lamb GD. Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil. (2004) 25:203–13. 10.1023/B:JURE.0000038265.37022.c5
    1. Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca(2)(+) sensitivity and sarcoplasmic reticulum Ca(2)(+) release in human skeletal muscle fibers. J Appl Physiol. (1985). (2012) 112:728–36. 10.1152/japplphysiol.01331.2011
    1. Bate-Smith EC. The buffering of muscle in rigor; protein, phosphate and carnosine. J Physiol. (1938) 92:336–43. 10.1113/jphysiol.1938.sp003605
    1. Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry. (2000) 65:757–65. Available online at:
    1. Dolan E, Saunders B, Harris RC, Bicudo J, Bishop DJ, Sale C, et al. . Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid-base regulation of skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol. (2019) 234:77–86. 10.1016/j.cbpa.2019.04.017
    1. Lancha Junior AH, Painelli VS, Saunders B, Artioli GG. Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Med. (2015) 45 (suppl. 1):S71–81. 10.1007/s40279-015-0397-5
    1. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. . β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. (2017) 51:658–69. 10.1136/bjsports-2016-096396
    1. Saunders B, Franchi M, Oliveira LF, Silva VE, Silva RP, Painelli VS, et al. 24-Wk β-alanine ingestion does not affect muscle taurine or clinical blood parameters. Eur J Nutr. (2019). 10.1007/s00394-018-1881-0. [Epub ahead of print].
    1. Dolan E, Swinton P, de Salles Painelli V, Stephens Hemingway B, Mazzolani B, Infante Smaira F, et al. . A systematic risk assessment and meta-analysis on the use of oral β-alanine supplementation. Adv Nutr. (2019) 10:452–63. 10.1093/advances/nmy115
    1. Saunders B, DE Salles Painelli V, DE Oliveira LF, DA Eira Silva V, DA Silva RP, Riani L, et al. . Twenty-four weeks of β-alanine supplementation on carnosine content, related genes, and exercise. Med Sci Sports Exerc. (2017) 49:896–906. 10.1249/MSS.0000000000001173
    1. Blancquaert L, Everaert I, Derave W. Beta-alanine supplementation, muscle carnosine and exercise performance. Curr Opin Clin Nutr Metab Care. (2015) 18:63–70. 10.1097/MCO.0000000000000127
    1. Perim PHL, Heibel AB, Artioli GG, Gualano B, Saunders B. Low efficiency of β-alanine supplementation to increase muscle carnosine: a retrospective analysis from a 4-week trial. Revista Brasileira de Educação Física e Esporte. (accepted).
    1. Stegen S, Blancquaert L, Everaert I, Bex T, Taes Y, Calders P, et al. . Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. (2013) 45:1478–85. 10.1249/MSS.0b013e31828ab073
    1. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. . Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. (2007) 32:225–33. 10.1007/s00726-006-0364-4
    1. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem. (2010) 285:9346–56. 10.1074/jbc.M109.095505
    1. Ng RH, Marshall FD. Regional and subcellular distribution of homocarnosine-carnosine synthetase in the central nervous system of rats. J Neurochem. (1978) 30:I87–90. 10.1111/j.1471-4159.1978.tb07051.x
    1. Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. β-Alanine supplementation elevates intramuscular carnosine content and attenuates fatigue in men and women similarly but does not change muscle l-histidine content. Nutr Res. (2017) 48:16–25. 10.1016/j.nutres.2017.10.002
    1. Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. . Comparison of sustained-release and rapid-release β-alanine formulations on changes in skeletal muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids. (2018) 51:49–60. 10.1007/s00726-018-2609-4
    1. Horinishi H, Grillo M, Margolis FL. Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem. (1978) 31:909–19. 10.1111/j.1471-4159.1978.tb00127.x
    1. Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, et al. . Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem. (2003) 278:6521–31. 10.1074/jbc.M209764200
    1. Hanson HT, Smith EL. Carnosinase; an enzyme of swine kidney. J Biol Chem. (1949) 179:789–801.
    1. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. (2013) 93:1803–45. 10.1152/physrev.00039.2012
    1. Lenney JF, Peppers SC, Kucera-Orallo CM, George RP. Characterization of human tissue carnosinase. Biochem J. (1985) 228:653–60. 10.1042/bj2280653
    1. Asatoor AM, Bandoh JK, Lant AF, Milne MD, Navab F. Intestinal absorption of carnosine and its constituent amino acids in man. Gut. (1970) 11:250–4. 10.1136/gut.11.3.250
    1. Park YJ, Volpe SL, Decker EA. Quantitation of carnosine in humans plasma after dietary consumption of beef. J Agric Food Chem. (2005) 53:4736–9. 10.1021/jf047934h
    1. Everaert I, Taes Y, De Heer E, Baelde H, Zutinic A, Yard B, et al. . Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am J Physiol Renal Physiol. (2012) 302:F1537–44. 10.1152/ajprenal.00084.2012
    1. Miyamoto Y, Nakamura H, Hoshi T, Ganapathy V, Leibach FH. Uphill transport of beta-alanine in intestinal brush-border membrane vesicles. Am J Physiol. (1990) 259:G372–9. 10.1152/ajpgi.1990.259.3.G372
    1. Bakardjiev A, Bauer K. Transport of beta-alanine and biosynthesis of carnosine by skeletal-muscle cells in primary culture. Eur J Biochem. (1994) 225:617–23. 10.1111/j.1432-1033.1994.00617.x
    1. Everaert I, De Naeyer H, Taes Y, Derave W. Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur J Appl Physiol. (2013) 113:1169–79. 10.1007/s00421-012-2540-4
    1. Fritzson P. The catabolism of C14-labeled uracil, dihydrouracil, and beta-ureidopropionic acid in rat liver slices. J Biol Chem. (1957) 226:223–8.
    1. Harris RC, Wise JA, Price KA, Kim HJ, Kim CK, Sale C. Determinants of muscle carnosine content. Amino Acids. (2012) 43:5–12. 10.1007/s00726-012-1233-y
    1. Everaert I, Mooyaart A, Baguet A, Zutinic A, Baelde H, Achten E, et al. Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids. (2011) 40:1221–9. 10.1007/s00726-010-0749-2
    1. Blancquaert L, Baguet A, Bex T, Volkaert A, Everaert I, Delanghe J, et al. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr. (2018) 119:759–70. 10.1017/S000711451800017X
    1. Blancquaert L, Everaert I, Missinne M, Baguet A, Stegen S, Volkaert A, et al. . Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med Sci Sports Exerc. (2017) 49:602–9. 10.1249/MSS.0000000000001213
    1. Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol (1985). (2010) 109:1096–101. 10.1152/japplphysiol.00141.2010
    1. Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, et al. . Carnosine loading and washout in human skeletal muscles. J Appl Physiol. (2009) 106:837–42. 10.1152/japplphysiol.91357.2008
    1. Derave W, Oezdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, et al. . beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. (2007) 103:1736–43. 10.1152/japplphysiol.00397.2007
    1. del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, et al. Beta-alanine (Carnosyn (TM)) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids. (2012) 43:49–56. 10.1007/s00726-011-1190-x
    1. Gross M, Boesch C, Bolliger CS, Norman B, Gustafsson T, Hoppeler H, et al. . Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur J Appl Physiol. (2014) 114:221–34. 10.1007/s00421-013-2767-8
    1. Stellingwerff T, Anwander H, Egger A, Buehler T, Kreis R, Decombaz J, et al. . Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids. (2012) 42:2461–72. 10.1007/s00726-011-1054-4
    1. Blancquaert L, Baba SP, Kwiatkowski S, Stautemas J, Stegen S, Barbaresi S, et al. . Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. J Physiol. (2016) 594:4849–63. 10.1113/JP272050
    1. McGinley C, Bishop DJ. Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can influence interpretation of adaptations to training. Exp Physiol. (2016) 101:1565–80. 10.1113/EP085921
    1. Stautemas J, Everaert I, Lefevere FBD, Derave W. Pharmacokinetics of β-alanine using different dosing strategies. Front Nutr. (2018) 5:70. 10.3389/fnut.2018.00070
    1. Church DD, Hoffman JR, Varanoske AN, Wang R, Baker KM, La Monica MB, et al. . Comparison of two β-alanine dosing protocols on muscle carnosine elevations. J Am Coll Nutr. (2017) 36:608–16. 10.1080/07315724.2017.1335250
    1. Stellingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids. (2012) 43:57–65. 10.1007/s00726-012-1245-7
    1. Spelnikov D, Harris RC. A kinetic model of carnosine synthesis in human skeletal muscle. Amino Acids. (2019) 51:115–21. 10.1007/s00726-018-2646-z
    1. Wang X, Zhong P, Gu Z, Yan Z. Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci. (2003) 23:9852–61. 10.1523/JNEUROSCI.23-30-09852.2003
    1. Crozier RA, Ajit SK, Kaftan EJ, Pausch MH. MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci. (2007) 27:4492–6. 10.1523/JNEUROSCI.4932-06.2007
    1. Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids. (2012) 43:67–76. 10.1007/s00726-011-1169-7
    1. Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT. Timing, optimal dose and intake duration of dietary supplements with evidence-based use in sports nutrition. J Exerc Nutr Biochem. (2016) 20:1–12. 10.20463/jenb.2016.0031
    1. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. . International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. (2017) 14:33. 10.1186/s12970-017-0189-4
    1. Clausen T. Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev. (1986) 66:542–80. 10.1152/physrev.1986.66.3.542
    1. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev. (2003) 83:1269–324. 10.1152/physrev.00011.2003
    1. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. (1996) 271:E821–6. 10.1152/ajpendo.1996.271.5.E821
    1. Green AL, Simpson EJ, Littlewood JJ, Macdonald IA, Greenhaff PL. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand. (1996) 158:195–202. 10.1046/j.1365-201X.1996.528300000.x
    1. James DE, Jenkins AB, Kraegen EW. Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats. Am J Physiol. (1985) 248:E567–74. 10.1152/ajpendo.1985.248.5.E567
    1. Tallon MJ, Harris RC, Boobis LH, Fallowfield JL, Wise JA. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res. (2005) 19:725–9. 10.1519/00124278-200511000-00001
    1. Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol. (1985) 58:14–7. 10.1152/jappl.1985.58.1.14
    1. Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, et al. . The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol. (2009) 106:131–8. 10.1007/s00421-009-0998-5
    1. Penafiel R, Ruzafa C, Monserrat F, Cremades A. Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids. (2004) 26:53–8. 10.1007/s00726-003-0034-8
    1. Mannion AF, Jakeman PM, Willan PL. Effects of isokinetic training of the knee extensors on high-intensity exercise performance and skeletal muscle buffering. Eur J Appl Physiol Occup Physiol. (1994) 68:356–61. 10.1007/BF00571457
    1. Baguet A, Everaert I, De Naeyer H, Reyngoudt H, Stegen S, Beeckman S, et al. . Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. Eur J Appl Physiol. (2011) 111:2571–80. 10.1007/s00421-011-1877-4
    1. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, et al. . The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. (2008) 34:547–54. 10.1007/s00726-007-0008-3
    1. Painelli VP, Nemezio K, Pinto AJ, Franchi M, Andrade I, Riani L, et al. HIIT augments muscle carnosine in the absence of dietary beta-alanine intake. Med Sci Sports Exerc. (2018) 50:2242–52. 10.1249/MSS.0000000000001697
    1. Cochran AJ, Percival ME, Thompson S, Gillen JB, MacInnis MJ, Potter MA, et al. β-alanine supplementation does not augment the skeletal muscle adaptive response to 6 weeks of sprint interval training. Int J Sport Nutr Exerc Metab. (2015) 25:541–9. 10.1123/ijsnem.2015-0046
    1. Bex T, Chung W, Baguet A, Stegen S, Stautemas J, Achten E, et al. . Muscle carnosine loading by beta-alanine supplementation is more pronounced in trained vs. untrained muscles. J Appl Physiol. (2014) 116:204–9. 10.1152/japplphysiol.01033.2013
    1. Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al. . International society of sports nutrition position stand: Beta-Alanine. J Int Soc Sports Nutr. (2015) 12:30. 10.1186/s12970-015-0090-y
    1. Galloway SD, Talanian JL, Shoveller AK, Heigenhauser GJ, Spriet LL. Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol (1985). (2008) 105:643–51. 10.1152/japplphysiol.90525.2008

Source: PubMed

3
Subscribe