Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks

Anne Schwarz, Janne M Veerbeek, Jeremia P O Held, Jaap H Buurke, Andreas R Luft, Anne Schwarz, Janne M Veerbeek, Jeremia P O Held, Jaap H Buurke, Andreas R Luft

Abstract

Background: Deficits in interjoint coordination, such as the inability to move out of synergy, are frequent symptoms in stroke subjects with upper limb impairments that hinder them from regaining normal motor function. Kinematic measurements allow a fine-grained assessment of movement pathologies, thereby complementing clinical scales, like the Fugl-Meyer Motor Assessment of the Upper Extremity (FMMA-UE). The study goal was to investigate the effects of the performed task, the tested arm, the dominant affected hand, upper limb function, and age on spatiotemporal parameters of the elbow, shoulder, and trunk. The construct validity of the metrics was examined by relating them with each other, the FMMA-UE, and its arm section. Methods: This is a cross-sectional observational study including chronic stroke patients with mild to moderate upper limb motor impairment. Kinematic measurements were taken using a wearable sensor suit while performing four movements with both upper limbs: (1) isolated shoulder flexion, (2) pointing, (3) reach-to-grasp a glass, and (4) key insertion. The kinematic parameters included the joint ranges of shoulder abduction/adduction, shoulder flexion/extension, and elbow flexion/extension; trunk displacement; shoulder-elbow correlation coefficient; median slope; and curve efficiency. The effects of the task and tested arm on the metrics were investigated using a mixed-model analysis. The validity of metrics compared to clinically measured interjoint coordination (FMMA-UE) was done by correlation analysis. Results: Twenty-six subjects were included in the analysis. The movement task and tested arm showed significant effects (p < 0.05) on all kinematic parameters. Hand dominance resulted in significant effects on shoulder flexion/extension and curve efficiency. The level of upper limb function showed influences on curve efficiency and the factor age on median slope. Relations with the FMMA-UE revealed the strongest and significant correlation for curve efficiency (r = 0.75), followed by shoulder flexion/extension (r = 0.68), elbow flexion/extension (r = 0.53), and shoulder abduction/adduction (r = 0.49). Curve efficiency additionally correlated significantly with the arm subsection, focusing on synergistic control (r = 0.59). Conclusion: The kinematic parameters of the upper limb after stroke were influenced largely by the task. These results underpin the necessity to assess different relevant functional movements close to real-world conditions rather than relying solely on clinical measures. Study Registration: clinicaltrials.gov, identifier NCT03135093 and BASEC-ID 2016-02075.

Keywords: biomechanical phenomena; interjoint coordination; kinematics; stroke; upper extremity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Schwarz, Veerbeek, Held, Buurke and Luft.

Figures

Figure 1
Figure 1
Measurement system set-up.
Figure 2
Figure 2
Schematic of shoulder–elbow coordination measures.
Figure 3
Figure 3
Study flow of the participants.
Figure 4
Figure 4
Spatial measures of the affected and less-affected arm per task across subjects (N = 26). AS, affected side; EFlexExt, elbow flexion/extension; LAS, less-affected side; SFlexExt, shoulder flexion/extension; SAbdAdd, shoulder abduction/adduction; TrunkDP, trunk displacement. (A) Shoulder flexion. (B) Pointing ahead. (C) reach-to-grasp a glass. (D) Key insertion.
Figure 5
Figure 5
Shoulder–elbow mean curve per tested arm and task across subjects (N = 26). (A) Shoulder flexion. (B) Pointing ahead. (C) reach-to-grasp a glass. (D) Key insertion.
Figure 6
Figure 6
Relation between shoulder–elbow coordination metrics and the Fugl–Meyer Motor Assessment of the Upper Extremity arm subsection (19-35/36) per subject and task. (A) Shoulder-elbow correlation coefficient per subject FMMA-UE arm subsection and task. (B) Shoulder-elbow median slope per subject FMMA-UE arm subsection and task. (C) Shoulder-elbow curve efficiency per subject FMMA-UE arm subsection and task.

References

    1. Al-Amri M., Nicholas K., Button K., Sparkes V., Sheeran L., Davies J. L. (2018). Inertial measurement units for clinical movement analysis: reliability and concurrent validity. Sensors 18:719. 10.3390/s18030719
    1. Allison R., Shenton L., Bamforth K., Kilbride C., Richards D. (2016). Incidence, time course and predictors of impairments relating to caring for the profoundly affected arm after stroke: a systematic review. Physiother. Res. Int. 21, 210–227. 10.1002/pri.1634
    1. Alt Murphy M., Murphy S., Persson H. C., Bergström U. B., Sunnerhagen K. S. (2018). Kinematic analysis using 3D motion capture of drinking task in people with and without upper-extremity impairments. J. Vis. Exp. 133:e57228. 10.3791/57228
    1. Alt Murphy M., Willen C., Sunnerhagen K. S. (2011). Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil. Neural Repair. 25, 71–80. 10.1177/1545968310370748
    1. Alt Murphy M., Willén C., Sunnerhagen K. S. (2013). Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke. Neurorehabil. Neural Repair. 27, 844–853. 10.1177/1545968313491008
    1. Baniña M. C., Mullick A. A., McFadyen B. J., Levin M. F. (2017). Upper limb obstacle avoidance behavior in individuals with stroke. Neurorehabil. Neural Repair. 31, 133–146. 10.1177/1545968316662527
    1. Beck Y., Herman T., Brozgol M., Giladi N., Mirelman A., Hausdorff J. M. (2018). SPARC: a new approach to quantifying gait smoothness in patients with Parkinson's disease. J. Neuroeng. Rehabil. 15:49. 10.1186/s12984-018-0398-3
    1. Beer R. F., Ellis M. D., Holubar B. G., Dewald J. P. (2007). Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve. 36:242–250. 10.1002/mus.20817
    1. Bernhardt J., Hayward K. S., Kwakkel G., Ward N. S., Wolf S. L., Borschmann K., et al. (2017). Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int. J. Stroke. 12, 444–450. 10.1177/1747493017711816
    1. Bohannon R. W., Smith M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 67, 206–207. 10.1093/ptj/67.2.206
    1. Brunnstrom S. (1966). Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys. Ther. 46, 357–375. 10.1093/ptj/46.4.357
    1. Brunnstrom S. (1970). Movement Therapy in Hemiplegia: A Neurophysiological Approach. New York, NY: Medical Dept, Harper & Row.
    1. Burridge J., Alt Murphy M., Buurke J., Feys P., Keller T., Klamroth-Marganska V., et al. . (2019). A systematic review of international clinical guidelines for rehabilitation of people with neurological conditions: what recommendations are made for upper limb assessment? Front Neurol. Jun 10:567. 10.3389/fneur.2019.00567
    1. Bustrén E. L., Sunnerhagen K. S., Alt Murphy M. (2017). Movement kinematics of the ipsilesional upper extremity in persons with moderate or mild stroke. Neurorehabil. Neural Repair. 31, 376–386. 10.1177/1545968316688798
    1. Cirstea M. C., Levin M. F. (2007). Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neurorehabil. Neural Repair. 21, 398–411. 10.1177/1545968306298414
    1. Cirstea M. C., Mitnitski A. B., Feldman A. G., Levin M. F. (2003). Interjoint coordination dynamics during reaching in stroke. Exp. Brain Res. 151, 289–300. 10.1007/s00221-003-1438-0
    1. Corbetta D., Sirtori V., Castellini G., Moja L., Gatti R. (2015). Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst. Rev. 2015:CD004433. 10.1002/14651858.CD004433.pub3
    1. de Paiva Silva F. P., Freitas S. M., Silva P. V., Banjai R. M., Alouche S. R. (2014). Ipsilesional arm motor sequence performance after right and left hemisphere damage. J Mot Behav. 46, 407–414. 10.1080/00222895.2014.924473
    1. Dong Y., Yean Lee W., Hilal S., Saini M., Wong T. Y., Chen C. L.-H., et al. . (2013). Comparison of the montreal cognitive assessment and the mini-mental state examination in detecting multi-domain mild cognitive impairment in a chinese sub-sample drawn from a population-based study. Int Psychogeriatr. 25, 1831–1838. 10.1017/S1041610213001129
    1. Ellis M. D., Carmona C., Drogos J., Traxel S., Dewald J. P. (2016). Progressive abduction loading therapy targeting flexion synergy to regain reaching function in chronic stroke: preliminary results from an rct. Ann Int Con IEEE Eng Med Biol Soc. 2016, 5837–5840. 10.1109/EMBC.2016.7592055
    1. Eraifej J., Clark W., France B., Desando S., Moore D. (2017). Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst Rev. 6:40. 10.1186/s13643-017-0435-5
    1. Feix T., Romero J., Schmiedmayer H., Dollar A. M., Kragic D. (2016). The GRASP taxonomy of human grasp types,” in IEEE Transactions on Human-Machine Systems, 46, 66–77. 10.1109/THMS.2015.2470657
    1. Finley M., Combs S., Carnahan K., Peacock S., Buskirk A. V. (2012). Comparison of 'less affected limb' reaching kinematics in individuals with chronic stroke and healthy age-matched controls. Phys. Occup. Ther. Geriatr. 30, 245–259. 10.3109/02703181.2012.716506
    1. Fugl-Meyer A. R., Jääsk,ö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7:13.
    1. Gladstone D. J., Danells C. J., Black S. E. (2002). The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil. Neural. Repair. 16, 232–240. 10.1177/154596802401105171
    1. Handjaras G., Bernardi G., Benuzzi F., Nichelli P. F., Pietrini P., Ricciardi E. (2015). A topographical organization for action representation in the human brain. Hum. Brain Mapp. 36, 3832–3844. 10.1002/hbm.22881
    1. Hoonhorst M. H., Nijland R. H., van den Berg J. S., Emmelot C. H., Kollen B. J., Kwakkel G. (2015). How do fugl-meyer arm motor scores relate to dexterity according to the action research arm test at 6 months poststroke?. Arch. Phys. Med. Rehabil. 96, 1845–1849. 10.1016/j.apmr.2015.06.009
    1. Houwink A., Steenbergen B., Prange G. B., Buurke J. H., Geurts A. C. (2013). Upper-limb motor control in patients after stroke: attentional demands and the potential beneficial effects of arm support. Hum. Mov. Sci. 32, 377–387. 10.1016/j.humov.2012.01.007
    1. Jeannerod M. (1990). The Neural and Behavioral Organization of Goal-Directed Movements. Oxford: Clarendon Press.
    1. Jørgensen H. S., Nakayama H., Raaschou H. O., Olsen T. S., Stroke. (1999). Neurologic and functional recovery the copenhagen stroke study. Phys. Med. Rehabil. Clin. N. Am. 10, 887–906. 10.1016/S1047-9651(18)30169-4
    1. Krabben T., Molier B. I., Houwink A., Rietman J. S., Buurke J. H., Prange G. B. (2011). Circle drawing as evaluative movement task in stroke rehabilitation: an explorative study. J. Neuroeng. Rehabil. 8:15. 10.1186/1743-0003-8-15
    1. Krakauer J. W., Carmichael S. T. (2017). Broken Movement. Neurobiology of Motor Recovery after Stroke. Cambridge, MA: MIT Press.
    1. Kwakkel G., Lannin N. A., Borschmann K., English C., Ali M., Churilov L., et al. . (2017). Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke. 12, 451–461. 10.1177/1747493017711813
    1. Kwakkel G., van Wegen E. E. H., Burridge J. H., Winstein C. J., van Dokkum L., Alt Murphy M., et al. . (2019). Standardized measurement of quality of upper limb movement after stroke: consensus-based core recommendations from the second stroke recovery and rehabilitation roundtable. Neurorehabil. Neural Repair. 33, 951–958. 10.1177/1545968319886477
    1. Lang C. E., Waddell K. J., Klaesner J. W., Bland M. D. (2017). A method for quantifying upper limb performance in daily life using accelerometers. J. Visualized Exp. 122:55673. 10.3791/55673
    1. Leo A., Handjaras G., Bianchi M., Marino H., Gabiccini M., Guidi A., et al. . (2016). A synergy-based hand control is encoded in human motor cortical areas. Elife 5:e13420. 10.7554/eLife.13420
    1. Levin M. F. (1996). Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119, 281–293. 10.1093/brain/119.1.281
    1. Levin M. F., Kleim J. A., Wolf S. L. (2009). What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair. 23, 313–319. 10.1177/1545968308328727
    1. Levin M. F., Liebermann D. G., Parmet Y., Berman S. (2016). Compensatory versus noncompensatory shoulder movements used for reaching in stroke. Neurorehabil. Neural Repair. 30, 635–646. 10.1177/1545968315613863
    1. Li K. Y., Lin K. C., Chen C. K., Liing R. J., Wu C. Y., Chang W. Y. (2015). Concurrent and predictive validity of arm kinematics with and without a trunk restraint during a reaching task in individuals with stroke. Arch. Phys. Med. Rehabil. 96, 1666–1675. 10.1016/j.apmr.2015.04.013
    1. Massie C., Malcolm M., Greene D., Browning R. (2014). Biomechanical contributions of the trunk and upper extremity in discrete versus cyclic reaching in survivors of stroke. Top Stroke Rehabil. 21, 23–32. 10.1310/tsr2101-23
    1. Massie C. L., Fritz S., Malcolm M. P. (2011). Elbow extension predicts motor impairment and performance after stroke. Rehabil. Res. Pract. 2011:381978. 10.1155/2011/381978
    1. McIsaac T. L., Lamberg E. M., Muratori L. M. (2015). Building a framework for a dual task taxonomy. BioMed. Res. Int. 2015:591475. 10.1155/2015/591475
    1. McMorland A. J., Runnalls K. D., Byblow W. D. (2015). A neuroanatomical framework for upper limb synergies after stroke. Front. Hum. Neurosci. 9:82. 10.3389/fnhum.2015.00082
    1. Mesquita I. A., Fonseca P. F. P. D., Borgonovo-Santos M., Ribeiro E., Pinheiro A. R. V., Correia M. V., et al. . (2020). Comparison of upper limb kinematics in two activities of daily living with different handling requirements. Hum. Mov. Sci. 72:102632. 10.1016/j.humov.2020.102632
    1. Michaelsen S. M., Jacobs S., Roby-Brami A., Levin M. F. (2004). Compensation for distal impairments of grasping in adults with hemiparesis. Exp. Brain Res. 157, 162–173. 10.1007/s00221-004-1829-x
    1. MVN Manual (2018). Xsene MVN User Manual, User Guide Xsens MVN, MVN Link, MVN Awinda, Document MV0319P, Revision X, Oct 2018. Enschede, NL: Xsens.
    1. Persson H. C., Parziali M., Danielsson A., Sunnerhagen K. S. (2012). Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. BMC Neurol. 12:162. 10.1186/1471-2377-12-162
    1. Prinsen C. A. C., Mokkink L. B., Bouter L. M., Alonso J., Patrick D. L., de Vet H. C. W., et al. . (2018). COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual. Life Res. 27, 1147–1157. 10.1007/s11136-018-1798-3
    1. Raghavan P. (2015). Upper limb motor impairment after stroke. Phys. Med. Rehabil. Clin. N. Am. 26, 599–610. 10.1016/j.pmr.2015.06.008
    1. Rech K. D., Salazar A. P., Marchese R. R., Schifino G., Cimolin V., Pagnussat A. S. (2020). Fugl-meyer assessment scores are related with kinematic measures in people with chronic hemiparesis after stroke. J. Stroke Cerebrovasc. Dis. 29:104463. 10.1016/j.jstrokecerebrovasdis.2019.104463
    1. Robert-Lachaine X., Mecheri H., Larue C., Plamondon A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 55, 609–619. 10.1007/s11517-016-1537-2
    1. Roetenberg D., Baten C. T., Veltink P. H. (2007a). Estimating body segment orientation by applying inertial and magnetic sensing near ferromagnetic materials. IEEE Trans. Neural. Syst. Rehabil. Eng. 15, 469–471. 10.1109/TNSRE.2007.903946
    1. Roetenberg D., Slycke P. J., Veltink P. H. (2007b). Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Trans. Biomed. Eng. 54, 883–890. 10.1109/TBME.2006.889184
    1. Roh J., Rymer W. Z., Perreault E. J., Yoo S. B., Beer R. F. (2013). Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109, 768–781. 10.1152/jn.00670.2012
    1. Santello M., Lang C. E. (2015). Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. Front. Hum. Neurosci. 8:1050. 10.3389/fnhum.2014.01050
    1. Santisteban L., Térémetz M., Bleton J. P., Baron J. C., Maier M. A., Lindberg P. G. (2016). Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. PLoS ONE 11:e0154792. 10.1371/journal.pone.0154792
    1. Schambra H. M., Parnandi A., Pandit N. G., Uddin J., Wirtanen A., Nilsen D. M. (2019). A taxonomy of functional upper extremity motion. Front. Neurol. 10:857 10.3389/fneur.2019.00857
    1. Schwarz A., Averta G., Veerbeek J. M., Luft A. R., Held J. P. O., Valenza G., et al. . (2019a). A functional analysis-based approach to quantify upper limb impairment level in chronic stroke patients: a pilot study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 4198–4204. 10.1109/EMBC.2019.8857732
    1. Schwarz A., Kanzler C. M., Lambercy O., Luft A. R., Veerbeek J. M. (2019b). Systematic review on kinematic assessments of upper limb movements after stroke. Stroke 50, 718–727. 10.1161/STROKEAHA.118.023531
    1. Sethi A., Stergiou N., Patterson T. S., Patten C., Richards L. G. (2017). Speed and rhythm affect temporal structure of variability in reaching poststroke: a pilot study. J. Mot. Behav. 49, 35–45. 10.1080/00222895.2016.1219304
    1. Stolk-Hornsveld F., Crow J. L., Hendriks E. P., van der Baan R., Harmeling-van der Wel B. C. (2006). The erasmus MC modifications to the (revised) Nottingham Sensory Assessment: a reliable somatosensory assessment measure for patients with intracranial disorders. Clin. Rehabil. 20, 160–172. 10.1191/0269215506cr932oa
    1. Subramanian S. K., Cross M. K., Hirschhauser C. S. (2020). Virtual reality interventions to enhance upper limb motor improvement after a stroke: commonly used types of platform and outcomes. Disabil. Rehabil. Assist. Technol. 23;1–9. 10.1080/17483107.2020.1765422
    1. Subramanian S. K., Yamanaka J., Chilingaryan G., Levin M. F. (2010). Validity of movement pattern kinematics as measures of arm motor impairment poststroke. Stroke 41, 2303–2308. 10.1161/STROKEAHA.110.593368
    1. Sukal T. M., Ellis M. D., Dewald J. P. (2007). Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp. Brain Res. 183, 215–223. 10.1007/s00221-007-1029-6
    1. Taub E., Uswatte G., Mark V. W., Morris D. M. (2006). The learned nonuse phenomenon: implications for rehabilitation. Eura. Medicophys. 42, 241–256.
    1. Thrane G., Sunnerhagen K. S., Persson H. C., Opheim A., Alt Murphy M. (2019). Kinematic upper extremity performance in people with near or fully recovered sensorimotor function after stroke. Physiother. Theory Pract. 35, 822–832. 10.1080/09593985.2018.1458929
    1. Tomita Y., Rodrigues M. R. M., Levin M. F. (2017). Upper limb coordination in individuals with stroke: poorly defined and poorly quantified. Neurorehabil. Neural Repair. 31, 885–897. 10.1177/1545968317739998
    1. Twitchell T. E. (1951). The restoration of motor function following hemiplegia in man. Brain 74, 443–480. 10.1093/brain/74.4.443
    1. van Kordelaar J., van Wegen E. E., Kwakkel G. (2012). Unraveling the interaction between pathological upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study. Exp. Brain Res. 221, 251–262. 10.1007/s00221-012-3169-6
    1. van Kordelaar J., van Wegen E. E., Nijland R. H., Daffertshofer A., Kwakkel G. (2013). Understanding adaptive motor control of the paretic upper limb early poststroke: the explicit-stroke program. Neurorehabil. Neural Repair. 27, 854–863. 10.1177/1545968313496327
    1. van Meulen F. B., Reenalda J., Buurke J. H., Veltink P. H. (2015). Assessment of daily-life reaching performance after stroke. Ann. Biomed. Eng. 43, 478–486. 10.1007/s10439-014-1198-y
    1. Veerbeek J. M., Langbroek-Amersfoort A. C., van Wegen E. E., Meskers C. G., Kwakkel G. (2017). Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil. Neural Repair. 31, 107–121. 10.1177/1545968316666957
    1. Walmsley C. P., Williams S. A., Grisbrook T., Elliott C., Imms C., Campbell A. (2018). Measurement of upper limb range of motion using wearable sensors: a systematic review. Sports Med. Open. 4:53. 10.1186/s40798-018-0167-7
    1. Woodbury M. L., Howland D. R., McGuirk T. E., Davis S. B., Senesac C. R., Kautz S., et al. . (2009). Effects of trunk restraint combined with intensive task practice on poststroke upper extremity reach and function: a pilot study. Neurorehabil. Neural Repair. 23, 78–91. 10.1177/1545968308318836
    1. Wu C.-Y., Liing R.-J., Chen H.-C., Chen C.-L., Lin K.-C. (2014). Arm and trunk movement kinematics during seated reaching within and beyond arm's length in people with stroke: a validity study. Phys. Ther. 94, 845–856. 10.2522/ptj.20130101
    1. Wu G., van der Helm F. C., Veeger H. E., Makhsous M., Van Roy P., Anglin C., et al. . (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. J. Biomech. 38, 981–992. 10.1016/j.jbiomech.2004.05.042
    1. Yang Q., Yang Y., Luo J., Li L., Yan T., Song R. (2017). Kinematic outcome measures using target-reaching arm movement in stroke. Ann. Biomed. Eng. 45, 2794–2803. 10.1007/s10439-017-1912-7
    1. Yew K. S., Cheng E. (2009). Acute stroke diagnosis. Am. Fam. Physician. 80, 33–40.

Source: PubMed

3
Subscribe