Haemodynamic Effects of Lung Recruitment Manoeuvres

András Lovas, Tamás Szakmány, András Lovas, Tamás Szakmány

Abstract

Atelectasis caused by lung injury leads to increased intrapulmonary shunt, venous admixture, and hypoxaemia. Lung recruitment manoeuvres aim to quickly reverse this scenario by applying increased airway pressures for a short period of time which meant to open the collapsed alveoli. Although the procedure can improve oxygenation, but due to the heart-lung and right and left ventricle interactions elevated intrathoracic pressures can inflict serious effects on the cardiovascular system. The purpose of this paper is to give an overview on the pathophysiological background of the heart-lung interactions and the best way to monitor these changes during lung recruitment.

Figures

Figure 1
Figure 1
Pressure-time product (a-b) and main characteristics (c) of sustained inflation (SI) and pressure control ventilation (PCV) recruitment manoeuvres. Paw, airway pressure; t, time; CI, cardiac index; PVRI, pulmonary vascular resistance index; RWSVI, right ventricle stroke work index; EI, eccentricity index.
Figure 2
Figure 2
The effects of increased transpulmonary pressure (TPP). PVR, pulmonary vascular resistance; RVEF, right ventricular ejection fraction; LVEF, left ventricular ejection fraction; V/Q, ventilation/perfusion; HPV, hypoxic pulmonary vasoconstriction.
Figure 3
Figure 3
Pressure chamber (heart) in a pressure chamber (thorax). LV ejection; left ventricular ejection.
Figure 4
Figure 4
Ventricular interdependence before (A) and during alveolar recruitment manoeuvre (B). D1, midmitral diameter; D2, diameter orthogonal to D1. Eccentricity index (EI) is calculated as D2/D1. RV, right ventricle; LV, left ventricle.

References

    1. Cortés I., Peñuelas O., Esteban A. Acute respiratory distress syndrome: evaluation and management. Minerva Anestesiologica. 2012;78(3):343–357.
    1. Lee W. L., Downey G. P. Neutrophil activation and acute lung injury. Current Opinion in Critical Care. 2001;7(1):1–7. doi: 10.1097/00075198-200102000-00001.
    1. Han S., Mallampalli R. K. The acute respiratory distress syndrome: from mechanism to translation. The Journal of Immunology. 2015;194(3):855–860. doi: 10.4049/jimmunol.1402513.
    1. Ware L. B., Matthay M. A. The acute respiratory distress syndrome. The New England Journal of Medicine. 2000;342(18):1334–1349. doi: 10.1056/nejm200005043421806.
    1. Pelosi P., de Abreu M. G. Acute respiratory distress syndrome: we can’t miss regional lung perfusion! BMC Anesthesiology. 2015;15, article 35 doi: 10.1186/s12871-015-0014-z.
    1. Leligdowicz A., Fan E. Extracorporeal life support for severe acute respiratory distress syndrome. Current Opinion in Critical Care. 2015;21(1):13–19. doi: 10.1097/mcc.0000000000000170.
    1. Ferguson N. D., Cook D. J., Guyatt G. H., et al. High-frequency oscillation in early acute respiratory distress syndrome. The New England Journal of Medicine. 2013;368(9):795–805. doi: 10.1056/nejmoa1215554.
    1. Guérin C., Reignier J., Richard J.-C., et al. Prone positioning in severe acute respiratory distress syndrome. The New England Journal of Medicine. 2013;368(23):2159–2168. doi: 10.1056/nejmoa1214103.
    1. Keenan J. C., Formenti P., Marini J. J. Lung recruitment in acute respiratory distress syndrome: what is the best strategy? Current Opinion in Critical Care. 2014;20(1):63–68. doi: 10.1097/mcc.0000000000000054.
    1. Lachmann B. Open up the lung and keep the lung open. Intensive Care Medicine. 1992;18(6):319–321. doi: 10.1007/bf01694358.
    1. Kacmarek R. M., Villar J. Management of refractory hypoxemia in ARDS. Minerva Anestesiologica. 2013;79(10):1173–1179.
    1. Fan E., Checkley W., Stewart T. E., et al. Complications from recruitment maneuvers in patients with acute lung injury: secondary analysis from the lung open ventilation study. Respiratory Care. 2012;57(11):1842–1849. doi: 10.4187/respcare.01684.
    1. Fuller B. M., Mohr N. M., Graetz T. J., et al. The impact of cardiac dysfunction on acute respiratory distress syndrome and mortality in mechanically ventilated patients with severe sepsis and septic shock: an observational study. Journal of Critical Care. 2015;30(1):65–70. doi: 10.1016/j.jcrc.2014.07.027.
    1. Toth I., Leiner T., Mikor A., Szakmany T., Bogar L., Molnar Z. Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Critical Care Medicine. 2007;35(3):787–793. doi: 10.1097/.
    1. Orchard C. H., Sanchea de Leon R., Sykes M. K. The relationship between hypoxic pulmonary vasoconstriction and arterial oxygen tension in the intact dog. The Journal of Physiology. 1983;338:61–74. doi: 10.1113/jphysiol.1983.sp014660.
    1. Iannuzzi M., de Sio A., de Robertis E., Piazza O., Servillo G., Tufano R. Different patterns of lung recruitment maneuvers in primary acute respiratory distress syndrome: effects on oxygenation and central hemodynamics. Minerva Anestesiologica. 2010;76(9):692–698.
    1. Reis Miranda D., Gommers D., Struijs A., et al. The open lung concept: effects on right ventricular afterload after cardiac surgery. British Journal of Anaesthesia. 2004;93(3):327–332. doi: 10.1093/bja/aeh209.
    1. Celebi S., Köner Ö., Menda F., Korkut K., Suzer K., Cakar N. The pulmonary and hemodynamic effects of two different recruitment maneuvers after cardiac surgery. Anesthesia and Analgesia. 2007;104(2):384–390. doi: 10.1213/01.ane.0000252967.33414.44.
    1. Dessap A. M., Voiriot G., Zhou T., et al. Conflicting physiological and genomic cardiopulmonary effects of recruitment maneuvers in murine acute lung injury. American Journal of Respiratory Cell and Molecular Biology. 2012;46(4):541–550. doi: 10.1165/rcmb.2011-0306oc.
    1. Haddad F., Hunt S. A., Rosenthal D. N., Murphy D. J. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–1448. doi: 10.1161/circulationaha.107.653576.
    1. Huh J. W., Hong S.-B., Lim C.-M., Koh Y. Effect of the alveolar recruitment manoeuvre on haemodynamic parameters in patients with acute respiratory distress syndrome: relationship with oxygenation. Respirology. 2010;15(8):1220–1225. doi: 10.1111/j.1440-1843.2010.01852.x.
    1. Janicki J. S., Weber K. T. The pericardium and ventricular interaction, distensibility, and function. The American Journal of Physiology. 1980;238(4):H494–H503.
    1. Nielsen J., Østergaard M., Kjaergaard J., et al. Lung recruitment maneuver depresses central hemodynamics in patients following cardiac surgery. Intensive Care Medicine. 2005;31(9):1189–1194. doi: 10.1007/s00134-005-2732-z.
    1. Fragata J. I., Areias J. C. Acute loads applied to the right ventricle: effect on left ventricular filling dynamics in the presence of an open pericardium. Pediatric Cardiology. 1996;17(2):77–81. doi: 10.1007/bf02505087.
    1. Pinsky M. R. Recent advances in the clinical application of heart-lung interactions. Current Opinion in Critical Care. 2002;8(1):26–31. doi: 10.1097/00075198-200202000-00005.
    1. Lovas A., Németh M. F., Trásy D., Molnár Z. Lung recruitment can improve oxygenation in patients ventilated in continuous positive airway pressure/pressure support mode. Frontiers in Medicine. 2015;2, article 25 doi: 10.3389/fmed.2015.00025.
    1. Katzenberg C., Olajos M., Morkin E., Goldman S. Effects of changes in airway pressure on the left ventricle and left atrium of dogs. Cardiovascular Research. 1986;20(11):853–862. doi: 10.1093/cvr/20.11.853.
    1. Alhashemi J. A., Cecconi M., Hofer C. K. Cardiac output monitoring: an integrative perspective. Critical Care. 2011;15(2, article 214) doi: 10.1186/cc9996.
    1. Lim S.-C., Adams A. B., Simonson D. A., et al. Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Critical Care Medicine. 2004;32(12):2378–2384. doi: 10.1097/01.ccm.0000147444.58070.72.
    1. Walley K. R. Deeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction. Critical Care. 2014;18(3, article 137) doi: 10.1186/cc13853.
    1. Hansen L. K., Sloth E., Nielsen J., et al. Selective recruitment maneuvers for lobar atelectasis: effects on lung function and central hemodynamics: an experimental study in pigs. Anesthesia & Analgesia. 2006;102(5):1504–1510. doi: 10.1213/01.ane.0000202477.29064.49.
    1. Campagna J. A., Carter C. Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 2003;98(5):1250–1260. doi: 10.1097/00000542-200305000-00030.
    1. Lim C.-M., Koh Y., Park W., et al. Mechanistic scheme and effect of ‘extended sigh’ as a recruitment maneuver in patients with acute respiratory distress syndrome: a preliminary study. Critical Care Medicine. 2001;29(6):1255–1260. doi: 10.1097/00003246-200106000-00037.
    1. Nielsen J., Nilsson M., Fredén F., et al. Central hemodynamics during lung recruitment maneuvers at hypovolemia, normovolemia and hypervolemia. a study by echocardiography and continuous pulmonary artery flow measurements in lung-injured pigs. Intensive Care Medicine. 2006;32(4):585–594. doi: 10.1007/s00134-006-0082-0.
    1. Fougères E., Teboul J.-L., Richard C., Osman D., Chemla D., Monnet X. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Critical Care Medicine. 2010;38(3):802–807. doi: 10.1097/ccm.0b013e3181c587fd.

Source: PubMed

3
Subscribe