First-in-human phase I clinical trial of a TLR4-binding DNA aptamer, ApTOLL: Safety and pharmacokinetics in healthy volunteers

Macarena Hernández-Jiménez, Samuel Martín-Vílchez, Dolores Ochoa, Gina Mejía-Abril, Manuel Román, Paola Camargo-Mamani, Sergio Luquero-Bueno, Bernd Jilma, María A Moro, Gerónimo Fernández, David Piñeiro, Marc Ribó, Víctor M González, Ignacio Lizasoain, Francisco Abad-Santos, Macarena Hernández-Jiménez, Samuel Martín-Vílchez, Dolores Ochoa, Gina Mejía-Abril, Manuel Román, Paola Camargo-Mamani, Sergio Luquero-Bueno, Bernd Jilma, María A Moro, Gerónimo Fernández, David Piñeiro, Marc Ribó, Víctor M González, Ignacio Lizasoain, Francisco Abad-Santos

Abstract

ApTOLL is an aptamer that antagonizes Toll-like receptor 4 and improves functional outcomes in models of ischemic stroke and myocardial infarction. The aim of this study was to characterize the safety and pharmacokinetics of ApTOLL in healthy volunteers. A first-in-human dose-ascending, randomized, placebo-controlled phase I clinical trial to assess safety and pharmacokinetics of ApTOLL (30-min infusion intravenously) was performed in 46 healthy adult male volunteers. The study was divided into two parts: part A included seven single ascending dose levels, and part B had one multiple dose cohort. Safety and pharmacokinetic parameters were evaluated. No serious adverse events or biochemistry alterations were detected at any dose nor at any administration pattern studied. Maximum concentration was detected at the end of the infusion and mean half-life was 9.3 h. Interestingly, exposure increased in the first four levels receiving doses from 0.7 mg to 14 mg (AUC of 2,441.26 h∗ng/mL to 23,371.11 h∗ng/mL) but remained stable thereafter (mean of 23,184.61 h∗ng/mL after 70 mg). Consequently, the multiple dose study did not show any accumulation of ApTOLL. These results show an excellent safety and adequate pharmacokinetic profile that, together with the efficacy demonstrated in nonclinical studies, provide the basis to start clinical trials in patients.

Keywords: MT: oligonucleotides; MT: therapies and applications; TLR4; antagonist; aptamer; clinical trial; first-in-human; healthy subjects; inflammation; pharmacokinetics; safety.

Conflict of interest statement

M.H.J. and D.P.R. are employees of aptaTargets S.L. V.M.G. is researcher from FIBio-HRC. G.F. is employee of Aptus Biotech S.L. M.Ri. receives payment from Philips as Co-principal investigator of the WE TRUST study and he has a consulting agreement with Medtronic, Stryker, Cerenovus, CVAid, Methinks, Anaconda Biomed, and aptaTargets S.L. B.J. served as consultant to aptaTargets S.L. F.A.S. and D.O. have been consultants or investigators in clinical trials sponsored by the following pharmaceutical companies: Abbott, Alter, aptaTargets, Chemo, Cinfa, FAES, Farmalíder, Ferrer, GlaxoSmithKline, Galenicum, Gilead, Italfarmaco, Janssen-Cilag, Kern, Normon, Novartis, Servier, Silverpharma, Teva, and Zambon. The information disclosed in this article is protected by the international patent application WO2015197706 and its extensions to different countries; and by the international patent WO2020/230108.

© 2022 The Authors.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Subject disposition in the ApTOLL-FIH-01 clinical trial (for details see materials and methods section)
Figure 2
Figure 2
ApTOLL plasma concentrations versus time after administration of different dose levels in part A of ApTOLL-FIH-01 clinical trial (A–G) Plots of same color correspond to one subject enrolled in every single level of part A of the study. (A) Level 1 = 0.7 mg; (B) Level 2 = 2.1 mg; (C) Level 3 = 7 mg; (D) Level 4 = 14 mg; (E) Level 5 = 21 mg; (F) Level 6 = 42 mg; and (G) Level 7 = 70 mg. In every dose level, the concentration is shown in a lineal scale (left graphs) and in semilogarithmic scale (right graphs).
Figure 3
Figure 3
ApTOLL concentration versus time in the part B of ApTOLL-FIH-01 clinical trial (A and B) Plots of same color correspond to one subject enrolled in the part B of the study. 21 mg of ApTOLL was administered intravenously every 8 h during 24 h. The concentration is shown in lineal scale (A) and semilogarithmic scale (B).

References

    1. Fernández G., Moraga A., Cuartero M.I., García-Culebras A., Peña-Martínez C., Pradillo J.M., Hernández-Jiménez M., Sacristán S., Ayuso M.I., Gonzalo-Gobernado R., et al. TLR4-Binding DNA aptamers show a protective effect against acute stroke in animal models. Mol. Ther. J. Am. Soc. Gene Ther. 2018;26:2047–2059.
    1. Ramirez-Carracedo R., Tesoro L., Hernandez I., Diez-Mata J., Piñeiro D., Hernandez-Jimenez M., Zamorano J.L., Zaragoza C. Targeting TLR4 with ApTOLL improves heart function in response to coronary ischemia reperfusion in pigs undergoing acute myocardial infarction. Biomolecules. 2020;10:1167.
    1. Medzhitov R., Preston-Hurlburt P., Janeway C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–397.
    1. Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001;1:135–145.
    1. Sabroe I., Read R.C., Whyte M.K., Dockrell D.H., Vogel S.N., Dower S.K. Toll-like receptors in health and disease: complex questions remain. J. Immunol. 2003;171:1630–1635.
    1. Oyama J., Blais C., Jr., Liu X., Pu M., Kobzik L., Kelly R.A., Bourcier T. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 2004;109:784–789.
    1. Caso J.R., Pradillo J.M., Hurtado O., Lorenzo P., Moro M.A., Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007;115:1599–1608.
    1. Kerfoot S.M., Long E.M., Hickey M.J., Andonegui G., Lapointe B.M., Zanardo R.C., Bonder C., James W.G., Robbins S.M., Kubes P. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J. Immunol. 2004;173:7070–7077.
    1. Schwartz D.A. TLR4 and LPS hyporesponsiveness in humans. Int. J. Hyg. Environ. Health. 2002;205:221–227.
    1. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510.
    1. Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822.
    1. White R.R., Sullenger B.A., Rusconi C.P. Developing aptamers into therapeutics. J. Clin. Invest. 2000;106:929–934.
    1. Jayasena S.D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999;45:1628–1650.
    1. Rusconi C.P., Roberts J.D., Pitoc G.A., Nimjee S.M., White R.R., Quick G., Jr., Scardino E., Fay W.P., Sullenger B.A. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 2004;22:1423–1428.
    1. Ulrich H., Trujillo C.A., Nery A.A., Alves J.M., Majumder P., Resende R.R., Martins A.H. DNA and RNA aptamers: from tools for basic research towards therapeutic applications. Comb. Chem. High Throughput Screen. 2006;9:619–632.
    1. Elskens J.P., Elskens J.M., Madder A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: current status and future prospects. Int. J. Mol. Sci. 2020;21:4522.
    1. Lakhin A.V., Tarantul V.Z., Gening L.V. Aptamers: problems, solutions and prospects. Acta Naturae. 2013;5:34–43.
    1. Zhou J., Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 2017;16:181–202.
    1. Jaffe G.J., Westby K., Csaky K.G., Monés J., Pearlman J.A., Patel S.S., Joondeph B.C., Randolph J., Masonson H., Rezaei K.A. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration: a randomized pivotal phase 2/3 trial. Ophthalmology. 2020;128:576–586.
    1. Boyce M., Warrington S., Cortezi B., Zöllner S., Vauléon S., Swinkels D.W., Summo L., Schwoebel F., Riecke K. Safety, pharmacokinetics and pharmacodynamics of the anti-hepcidin Spiegelmer lexaptepid pegol in healthy subjects. Br. J. Pharmacol. 2016;173:1580–1588.
    1. Zhu S., Gilbert J.C., Hatala P., Harvey W., Liang Z., Gao S., Kang D., Jilma B. The development and characterization of a long acting anti-thrombotic von Willebrand factor (VWF) aptamer. J. Thromb. Haemost. 2020;18:1113–1123.
    1. Steurer M., Montillo M., Scarfò L., Mauro F.R., Andel J., Wildner S., Trentin L., Janssens A., Burgstaller S., Frömming A., et al. Olaptesed pegol (NOX-A12) with bendamustine and rituximab: a phase IIa study in patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica. 2019;104:2053–2060.
    1. Ruckman J., Green L.S., Beeson J., Waugh S., Gillette W.L., Henninger D.D., Claesson-Welsh L., Janjić N. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 1998;273:20556–20567.
    1. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–2088.
    1. Dunn E.N., Hariprasad S.M., Sheth V.S. An overview of the Fovista and rinucumab trials and the fate of anti-PDGF medications. Ophthalmic Surg. Laser. Imag. 2017;48:100–104.
    1. Kovacevic K.D., Gilbert J.C., Jilma B. Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv. Drug Deliv. Rev. 2018;134:36–50.
    1. Dirnagl U., Iadecola C., Moskowitz M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–397.
    1. Prabhu S.D., Frangogiannis N.G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 2016;119:91–112.
    1. Maki T., Hayakawa K., Pham L.D., Xing C., Lo E.H., Arai K. Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol. Disord. Drug Targets. 2013;12:302–315.
    1. Dobrovolskaia M.A., McNeil S.E. Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin. Biol. Ther. 2015;15:1023–1048.
    1. Gorczyca M.E., Nair S.C., Jilma B., Priya S., Male C., Reitter S., Knoebl P., Gilbert J.C., Schaub R.G., Dockal M., et al. Inhibition of tissue factor pathway inhibitor by the aptamer BAX499 improves clotting of hemophilic blood and plasma. J. Thromb. Haemost. 2012;10:1581–1590.
    1. Dyke C.K., Steinhubl S.R., Kleiman N.S., Cannon R.O., Aberle L.G., Lin M., Myles S.K., Melloni C., Harrington R.A., Alexander J.H., et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation. 2006;114:2490–2497.
    1. Rosenberg J.E., Bambury R.M., Van Allen E.M., Drabkin H.A., Lara P.N., Jr., Harzstark A.L., Wagle N., Figlin R.A., Smith G.W., Garraway L.A., et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest. New Drugs. 2014;32:178–187.
    1. Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 2014;61:163–173.
    1. Rossignol D.P., Wasan K.M., Choo E., Yau E., Wong N., Rose J., Moran J., Lynn M. Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrob. Agents Chemother. 2004;48:3233–3240.
    1. Tidswell M., Tillis W., Larosa S.P., Lynn M., Wittek A.E., Kao R., Wheeler J., Gogate J., Opal S.M. Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit. Care Med. 2010;38:72–83.
    1. Rice T.W., Wheeler A.P., Bernard G.R., Vincent J.L., Angus D.C., Aikawa N., Demeyer I., Sainati S., Amlot N., Cao C., et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med. 2010;38:1685–1694.
    1. Monnet E., Lapeyre G., Poelgeest E.V., Jacqmin P., Graaf K., Reijers J., Moerland M., Burggraaf J., Min C. Evidence of NI-0101 pharmacological activity, an anti-TLR4 antibody, in a randomized phase I dose escalation study in healthy volunteers receiving LPS. Clin. Pharmacol. Ther. 2017;101:200–208.
    1. Monnet E., Choy E.H., McInnes I., Kobakhidze T., de Graaf K., Jacqmin P., Lapeyre G., de Min C. Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: a phase II study. Ann. Rheum. Dis. 2020;79:316–323.
    1. van Gerven J., Bonelli M. Commentary on the EMA Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. Br. J. Clin. Pharmacol. 2018;84:1401–1409.
    1. Food. Evaluation, D. A. J. C. f. D . Food and Drug Administration; 2005. Research. Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers; p. 7.
    1. Aguirre C., García M. [Causality assessment in reports on adverse drug reactions. Algorithm of Spanish pharmacovigilance system] Med. Clin. 2016;147:461–464.

Source: PubMed

3
Subscribe