Cognitive and Neuropsychiatric Features of COVID-19 Patients After Hospital Dismission: An Italian Sample

Veronica Cian, Alessandro De Laurenzis, Chiara Siri, Anna Gusmeroli, Margherita Canesi, Veronica Cian, Alessandro De Laurenzis, Chiara Siri, Anna Gusmeroli, Margherita Canesi

Abstract

Background and aims: Recent studies suggest cognitive, emotional, and behavioral impairments occur in patients after SARS-CoV-2 infection. However, studies are limited to case reports or case series and, to our knowledge, few of them have control groups. This study aims to assess the prevalence of neuropsychological and neuropsychiatric impairment in patients after hospitalization.

Methods: We enrolled 29 COVID+ patients (M/F: 17/12; age 58.41 ± 10.00 years; education 11.07 ± 3.77 years, 2 left handers) who needed hospitalization but no IC, about 20 days post-dismission, and 29 COVID- healthy matched controls. Neuropsychological and neuropsychiatric assessments were conducted via teleneuropsychology using the following tests: MMSE, CPM47, RAVLT, CDT, Digit-Span Forward/Backward, Verbal fluencies; BDI-II, STAI. People with previous reported cognitive impairment and neurological or psychiatric conditions were excluded. Clinical and demographics were collected. Comparison between groups was conducted using parametric or non-parametric tests according to data distribution (T-test, Mann Withney-U test; Chi-square goodness of fit). Within COVID+ group, we also evaluated the correlation between the cognitive and behavioral assessment scores and clinical variables collected.

Results: Among COVID+, 62% had at least one pathological test (vs. 13% in COVID-; p = 0.000) and significantly worst performances than COVID- in RAVLT learning (42.55 ± 10.44 vs. 47.9 ± 8.29, p = 0.035), RAVLT recall (8.79 ± 3.13 vs. 10.38 ± 2.19, p = 0.03), and recognition (13.69 ± 1.47 vs. 14.52 ± 0.63, p = 0.07). STAI II was higher in COVID- (32.69 ± 7.66 vs. 39.14 ± 7.7, p = 0.002). Chi-square on dichotomous values (normal/pathological) showed a significant difference between groups in Digit backward test (pathological 7/29 COVID+ vs. 0/29 COVID-; p = 0.005).

Conclusions: Patients COVID+ assessed by teleneuropsychology showed a vulnerability in some memory and executive functions (working memory, learning, delayed recall, and recognition). Intriguingly, anxiety was higher in the control group. Our findings therefore confirm the impact of COVID-19 on cognition even in patients who did not need IC. Follow-up is needed to evaluate the evolution of COVID-19-related cognitive deficit.

Clinical trial registration: [ClinicalTrials.gov], identifier [NCT05143320].

Keywords: COVID-19; cognition; executive functions; memory; teleneuropsychology.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Cian, De Laurenzis, Siri, Gusmeroli and Canesi.

Figures

FIGURE 1
FIGURE 1
Percentage of number of pathological neuropsychological test in patients with SARS-CoV-2 and control group. Significance is indicated with *.
FIGURE 2
FIGURE 2
Percentage of number of people with at least one pathological score in NPS tests.
FIGURE 3
FIGURE 3
Percentage in worsening in COVID+ group referred by the caregiver.

References

    1. AdriánPriego-Parra B., Triana-Romero A., Pinto-Gálvez S. M., Durán Ramos C., Salas-Nolasco O., Manriquez Reyes M, et al. (2020). Anxiety, depression, attitudes, and internet addiction during the initial phase of the 2019 coronavirus disease (COVID-19) epidemic: a cross-sectional study in México. medRxiv [Preprint] 10.1101/2020.05.10.20095844
    1. Alemanno F., Houdayer E., Parma A., Spina A., Del Forno A., Scatolini A., et al. (2021). COVID-19 cognitive deficits after respiratoryassistance in the subacute phase: a COVID-rehabilitationunitexperience. PLoS One 16:e0246590. 10.1371/journal.pone.0246590
    1. Almeria M., Cejudo J. C., Sotoca J., Deus J., Krupinski J. (2020). Cognitive profile following COVID-19 infection: clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 9:100163. 10.1016/j.bbih.2020.100163
    1. Basso A., Capitani E., Laiacona M. (1987). Raven’s coloured progressive matrices: normative values on 305 adult normal controls. Funct. Neurol. 2 189–194.
    1. Beaud V., Crottaz-Herbette S., Dunet V., Vaucher J., Bernard-Valnet R., Du Pasquier R., et al. (2021). Pattern of cognitive deficits in severe COVID-19. J. Neurol. Neurosurg. Psychiatry 92 567–568. 10.1136/jnnp-2020-325173
    1. Beck A. T., Ward C. H., Mendelson M., Mock J., Erbaugh J. (1961). An inventory for measuring depression. Arch. Gen. Psychiatry 4 561–571. 10.1001/archpsyc.1961.01710120031004
    1. Bilder C. R., Iwen P. C., Abdalhamid B. (2021). Pool Size Selection When Testing for Severe Acute Respiratory Syndrome Coronavirus 2. Clin. Infect. Dis. 72 1104–1105. 10.1093/cid/ciaa774
    1. Carda S., Invernizzi M., Bavikatte G., Bensmaïl D., Bianchi F., Deltombe T., et al. (2020). The role of physical and rehabilitation medicine in the COVID-19 pandemic: the clinician’s view. Ann. Phys. Rehabil. Med. 63 554–556. 10.1016/j.rehab.2020.04.001
    1. Carlesimo G. A., Caltagirone C., Gainotti G. (1996). The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur. Neurol. 36 378–384. 10.1159/000117297
    1. Costa A., Bagoj E., Monaco M., Zabberoni S., De Rosa S., Papantonio A. M., et al. (2014). Standardization and normative data obtained in the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol. Sci. 35 365–372. 10.1007/s10072-013-1520-8
    1. Cotelli M. S., Cotelli M., Manelli F., Bonetti G., Rao R., Padovani A., et al. (2020). Effortful speech with distortion of prosody following SARS-CoV-2 infection. Neurol. Sci. 41 3767–3768. 10.1007/s10072-020-04603-2
    1. Douaud G., Lee S., Alfaro-Almagro F., Arthofer C., Wang C., Lange F., et al. (2021). Brain imaging before and after COVID-19 in UK Biobank. medRxiv [Preprint] 10.1101/2021.06.11.21258690
    1. Ferrarese C., Silani V., Priori A., Galimberti S., Agostoni E., Monaco S., et al. (2020). An Italian multicenter retrospective-prospective observational study on neurological manifestations of COVID-19 (NEUROCOVID). Neurol. Sci. 41 1355–1359. 10.1007/s10072-020-04450-1
    1. Flanagan E. W., Beyl R. A., Fearnbach S. N., Altazan A. D., Martin C. K., Redman L. M. (2021). The Impact of COVID-19 Stay-At-Home Orders on Health Behaviors in Adults. Obesity 29 438–445. 10.1002/oby.23066
    1. Gao J., Zheng P., Jia Y., Chen H., Mao Y., Chen S., et al. (2020). Mental health problems and social media exposure during COVID-19 outbreak. PLoS One 15:e0231924. 10.1371/journal.pone.0231924
    1. Graham E. L., Clark J. R., Orban Z. S., Lim P. H., Szymanski A. L., Taylor C., et al. (2021). Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol. 8 1073–1085. 10.1002/acn3.51350
    1. Hopkins R. O., Gale S. D., Weaver L. K. (2006). Brain atrophy and cognitive impairment in survivors of Acute Respiratory Distress Syndrome. Brain Inj. 20 263–271. 10.1080/02699050500488199
    1. Hopkins R. O., Weaver L. K., Collingridge D., Parkinson R. B., Chan K. J., Orme J. F., Jr. (2005). Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 171 340–347. 10.1164/rccm.200406-763OC
    1. Hopkins R. O., Weaver L. K., Pope D., Orme J. F., Bigler E. D., Larson-Lohr V. (1999). Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 160 50–56. 10.1164/ajrccm.160.1.9708059
    1. Hosseini S., Wilk E., Michaelsen-Preusse K., Gerhauser I., Baumgärtner W., Geffers R., et al. (2018). Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J. Neurosci. 38 3060–3080. 10.1523/JNEUROSCI.1740-17.2018
    1. Jaywant A., Vanderlind W. M., Boas S. J., Dickerman A. L. (2021). Behavioral interventions in acute COVID-19 recovery: a new opportunity for integrated care. Gen. Hosp. Psychiatry 69 113–114. 10.1016/j.genhosppsych.2020.07.001
    1. Kertesz A., Davidson W., Fox H. (1997). Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can. J. Neurol. Sci. 24 29–36. 10.1017/s0317167100021053
    1. Khatoon F., Prasad K., Kumar V. (2020). Neurological manifestations of COVID-19: available evidences and a new paradigm. J. Neurovirol. 26 619–630. 10.1007/s13365-020-00895-4
    1. Kumar A., Nayar K. R. (2021). COVID 19 and its mental health consequences. J. Ment. Health 30 1–2. 10.1080/09638237.2020.1757052
    1. Levin A. T., Hanage W. P., Owusu-Boaitey N., Cochran K. B., Walsh S. P., Meyerowitz-Katz G. (2020). Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 35 1123–1138. 10.1007/s10654-020-00698-1
    1. Marra D. E., Hamlet K. M., Bauer R. M., Bowers D. (2020). Validity of teleneuropsychology for older adults in response to COVID-19: a systematic and critical review. Clin. Neuropsychol. 34 1411–1452. 10.1080/13854046.2020.1769192
    1. Mattioli A. V., Sciomer S., Cocchi C., Maffei S., Gallina S. (2020). Quarantine during COVID-19 outbreak: changes in diet and physical activity increase the risk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 30 1409–1417. 10.1016/j.numecd.2020.05.020
    1. Measso G., Cavarzeran F., Zappalà G., Lebowitz B. D., Crook T. H., Pirozzolo F. J., et al. (1993). The mini-mental state examination: normative study of an Italian random sample. Dev. Neuropsychol. 9 77–85. 10.1080/87565649109540545
    1. Mirfazeli F. S., Sarabi-Jamab A., Jahanbakhshi A., Kordi A., Javadnia P., Shariat S. V., et al. (2020). Neuropsychiatric manifestations of COVID-19 can be clustered in three distinct symptom categories. Sci. Rep. 10:20957. 10.1038/s41598-020-78050-6
    1. Monaco M., Costa A., Caltagirone C., Carlesimo G. A. (2013). Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurol. Sci. 34 749–754. 10.1007/s10072-012-1130-x
    1. Mondini S., Mapelli D., Vestri A., Arcari G., Bisiacchi P. (2011). Esame Neuropsicologico Breve 2. Italy: Raffaello Cortina Editore.
    1. Negrini F., Ferrario I., Mazziotti D., Berchicci M., Bonazzi M., de Sire A., et al. (2021). Neuropsychological Features of Severe Hospitalized Coronavirus Disease 2019 Patients at Clinical Stability and Clues for Postacute Rehabilitation. Arch. Phys. Med. Rehabil. 102 155–158. 10.1016/j.apmr.2020.09.376
    1. Pantelis C., Jayaram M., Hannan A. J., Wesselingh R., Nithianantharajah J., Wannan C. M., et al. (2020). Neurological, neuropsychiatric and neurodevelopmental complications of COVID-19. Aust. N. Z. J. Psychiatry [Epub ahead of print]. 10.1177/0004867420961472
    1. Petzold M. B., Bendau A., Plag J., Pyrkosch L., MascarellMaricic L., Betzler F., et al. (2020). Risk, resilience, psychological distress, and anxiety at the beginning of the COVID-19 pandemic in Germany. Brain Behav. 10:e01745. 10.1002/brb3.1745
    1. Riordan P., Stika M., Goldberg J., Drzewiecki M. (2020). COVID-19 and clinical neuropsychology: a review of neuropsychological literature on acute and chronic pulmonary disease. Clin. Neuropsychol. 34 1480–1497. 10.1080/13854046.2020.1810325
    1. Rogers J. P., Chesney E., Oliver D., Pollak T. A., McGuire P., Fusar-Poli P., et al. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7 611–627. 10.1016/S2215-0366(20)30203-0
    1. Sozzi M., Algeri L., Corsano M., Crivelli D., Daga M. A., Fumagalli F., et al. (2020). Neuropsychology in the Times of COVID-19. The Role of the Psychologist in Taking Charge of Patients With Alterations of Cognitive Functions. Front. Neurol. 11:573207. 10.3389/fneur.2020.573207
    1. Spielberger C. D. (1989). S.T.A.I. (State-Trait-Anxiety Inventory). Inventario per l’ansia di stato e di tratto. Firenze: Organizzazioni speciali.
    1. Stracciari A., Bottini G., Guarino M., Magni E., Pantoni L. (2021). Cognitive and Behavioral Neurology” Study Group of the Italian Neurological Society. Cognitive and behavioral manifestations in SARS-CoV-2 infection: not specific or distinctive features? Neurol. Sci. 42 2273–2281. 10.1007/s10072-021-05231-0
    1. Taquet M., Luciano S., Geddes J. R., Harrison P. J. (2021). Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8 130–140. 10.1016/S2215-0366(20)30462-4
    1. Wallace A., Bucks R. S. (2013). Memory and obstructive sleep apnea: a meta-analysis. Sleep 36 203–220. 10.5665/sleep.2374
    1. Wilcox M. E., Brummel N. E., Archer K., Ely E. W., Jackson J. C., Hopkins R. O. (2013). Cognitive dysfunction in ICU patients: risk factors, predictors, and rehabilitation interventions. Crit. Care Med. 41 S81–S98. 10.1097/CCM.0b013e3182a16946
    1. Wilson B. A., Betteridge S., Fish J. (2020). Neuropsychological consequences of Covid-19. Neuropsychol. Rehabil. 30 1625–1628. 10.1080/09602011.2020.1808483
    1. Wilson M. G., Hull J. H., Rogers J., Pollock N., Dodd M., Haines J., et al. (2020). Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: a practical guide for sport and exercise medicine physicians. Br. J. Sports Med. 54 1157–1161. 10.1136/bjsports-2020-102710
    1. Woo M. S., Malsy J., Pöttgen J., SeddiqZai S., Ufer F., Hadjilaou A., et al. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2:fcaa205. 10.1093/braincomms/fcaa205
    1. Yesilkaya U. H., Balcioglu Y. A. (2020). Neuroimmune correlates of the nervous system involvement of COVID-19: a commentary. J. Clin. Neurosci. 78 449–450. 10.1016/j.jocn.2020.05.056
    1. Yesilkaya U. H., Sen M., Balcioglu Y. A. (2021). COVID-19-related cognitive dysfunction may be associated with transient disruption in the DLPFC glutamatergic pathway. J. Clin. Neurosci. 87 153–155. 10.1016/j.jocn.2021.03.007
    1. Zhou H., Lu S., Chen J., Wei N., Wang D., Lyu H., et al. (2020). The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 129 98–102. 10.1016/j.jpsychires.2020.06.022

Source: PubMed

3
Subscribe