Centre- versus home-based exercise among people with mci and mild dementia: study protocol for a randomized parallel-group trial

Laura E Middleton, Sandra E Black, Nathan Herrmann, Paul I Oh, Kayla Regan, Krista L Lanctot, Laura E Middleton, Sandra E Black, Nathan Herrmann, Paul I Oh, Kayla Regan, Krista L Lanctot

Abstract

Background: Worldwide, almost 50million people lived with dementia in 2016. A cure or disease modifying pharmaceutical treatment for dementia remains elusive so alternative therapies are of critical importance. Mounting evidence supports exercise in the prevention and therapy of dementia. However, the cognitive, physical, and psychological challenges common to dementia along with a poor understanding and accommodation of dementia in the community are major barriers to exercise. Consequently, effective delivery options need to be identified. The primary objective of this study is to compare the effectiveness of center-based (CB) exercise versus home-based (HB) exercise for achievement of physical activity guidelines among people with MCI or mild dementia.

Methods: This is a randomized parallel-group trial comparing the effects of CB and HB exercise adherence among community-dwelling adults ≥50 years with a clinical diagnosis of MCI or mild dementia. Participants will be randomized to either CB or HB exercise. The CB group will meet weekly for small group exercise and will be prescribed additional exercise to be completed independently. Participants in the HB group will be given a physical activity prescription to be completed independently in the community. Participants in HB will also be contacted by phone monthly to adjust exercise prescriptions. The primary outcome will be achievement of exercise guidelines (150 min/wk. of moderate activity) assessed using an activity monitor. Secondary objectives will evaluate cost-effectiveness and the influence of individual and environmental factors on the primary outcome. Tertiary outcomes include physical function, cognition, mood, and quality of life.

Discussion: There is scant research to indicate the most effective way to deliver exercise to people with MCI and mild dementia, which is needed specifically because these groups face significant barriers to exercise. To capitalize on the benefits of exercise, feasible exercise delivery options need to be identified. The results of this study will directly complement ongoing clinical trials and will be essential to implementing exercise recommendations specific to the prevention and therapy of dementia in a feasible and cost-effective manner when they emerge.

Trial registration: Clinicatrials.gov ; Identifier: NCT02774720 (version updated December 12, 2016).

Keywords: Clinical trial; Delivery of health care; Dementia; Exercise; Mild cognitive impairment.

Conflict of interest statement

Ethics approval and consent to participate

This study has received ethics clearance through a University of Waterloo Research Ethics Committee, the Tri-Hospital Research Ethics Board, the Sunnybrook Research Ethics Board, and the University Health Network Research Ethics Board. All participants will either provide written informed consent to participate in the study or provide assent to have a substitution decision maker provide informed consent on their behalf.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow of study participants

References

    1. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer Report 2016. 2016. London, UK, Alzheimer's disease international. Ref Type: Report.
    1. Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol. 2009;66:1210–1215. doi: 10.1001/archneurol.2009.201.
    1. Kramer AF, Erickson KI. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci. 2007;11:342–348. doi: 10.1016/j.tics.2007.06.009.
    1. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L: Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. . 2008;16(3), 2008/07/23: CD005381.
    1. Forbes D, Thiessen EJ, Blake CM, Forbes SC, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2013;12:CD006489.
    1. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ et al.: American College of Sports Medicine position stand. Exercise and physical activity for older adults. . 2009;41(7), 2009/06/12: 1510–1530.
    1. Heyn PC, Johnson KE, Kramer AF. Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: a meta-analysis. J Nutr Health Aging. 2008;12:401–409. doi: 10.1007/BF02982674.
    1. Blankevoort CG, van Heuvelen MJ, Boersma F, Luning H, De JJ SEJ. Review of effects of physical activity on strength, balance, mobility and ADL performance in elderly subjects with dementia. Dement Geriatr Cogn Disord. 2010;30:392–402. doi: 10.1159/000321357.
    1. Jensen LE, Padilla R. Effectiveness of interventions to prevent falls in people with Alzheimer's disease and related dementias. Am J Occup Ther. 2011;65:532–540. doi: 10.5014/ajot.2011.002626.
    1. Pitkala K, Savikko N, Poysti M, Strandberg T, Laakkonen ML. Efficacy of physical exercise intervention on mobility and physical functioning in older people with dementia: a systematic review. Exp Gerontol. 2013;48:85–93. doi: 10.1016/j.exger.2012.08.008.
    1. Ontario Brain Institute. Physical activity and Alzheimer's disease pamphlet. 2014. Ref Type: Report.
    1. Department of Health PAHIaP. Start Active, Stay Active: A report on physical activity from the four home countries' Chief Medical Officers. 7–11-0110. Ref Type: Report.
    1. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, 2008. 2008. Washington, DC., U.S. Department of Health and Human Services. Ref Type: Report.
    1. Tremblay MS, Warburton DE, Janssen I, Paterson DH, Latimer AE, Rhodes RE, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36:36–46. doi: 10.1139/H11-009.
    1. Statistics Canada. Canadian Health Measures Survey: Directly measured physical activity of Canadians, 2012 and 2013. 2015. Ref Type: Report.
    1. Berkemeyer K, Wijndaele K, White T, Cooper AJ, Luben R, Westgate K, et al. The descriptive epidemiology of accelerometer-measured physical activity in older adults. Int J Behav Nutr Phys Act. 2016;13:2. doi: 10.1186/s12966-015-0316-z.
    1. Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58:498–504. doi: 10.1001/archneur.58.3.498.
    1. Sachdev PS, Lipnicki DM, Crawford J, Reppermund S, Kochan NA, Trollor JN, et al. Risk profiles for mild cognitive impairment vary by age and sex: the Sydney memory and ageing study. Am J Geriatr Psychiatry. 2012;20:854–865. doi: 10.1097/JGP.0b013e31825461b0.
    1. Apostolova LG, Cummings JL. Neuropsychiatric manifestations in mild cognitive impairment: a systematic review of the literature. Dement Geriatr Cogn Disord. 2008;25:115–126. doi: 10.1159/000112509.
    1. Tangen GG, Engedal K, Bergland A, Moger TA, Mengshoel AM. Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease. Phys Ther. 2014;94:1123–1134. doi: 10.2522/ptj.20130298.
    1. van Alphen HJ, Hortobagyi T, van Heuvelen MJ. Barriers, motivators, and facilitators of physical activity in dementia patients: a systematic review. Arch Gerontol Geriatr. 2016;66:109–118. doi: 10.1016/j.archger.2016.05.008.
    1. Bowes A, Dawson A, Jepson R, McCabe L. Physical activity for people with dementia: a scoping study. BMC Geriatr. 2013;13:129. doi: 10.1186/1471-2318-13-129.
    1. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J et al.: Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300, 2008/09/05: 1027–1037.
    1. Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer's disease: a randomized controlled trial. Scand J Caring Sci. 2012;26:12–19. doi: 10.1111/j.1471-6712.2011.00895.x.
    1. Ashworth NL, Chad KE, Harrison EL, Reeder BA, Marshall SC. Home versus center based physical activity programs in older adults. Cochrane Database Syst Rev. 2005;25(1):CD004017.
    1. Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861893. doi: 10.1155/2013/861893.
    1. Canadian Society for Exercise Physiology. PAR-Q and You. 1994. Gloucester, Canada, Canadian society for exercise physiology. Ref Type: Pamphlet.
    1. Freene N, Waddington G, Chesworth W, Davey R, Goss J. Physical activity at home (PAAH)’, evaluation of a group versus home based physical activity program in community dwelling middle aged adults: rationale and study design. BMC Public Health. 2011;11:883. doi: 10.1186/1471-2458-11-883.
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094–1105. doi: 10.1161/CIRCULATIONAHA.107.185650.
    1. Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA. Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc. 2011;43:867–876. doi: 10.1249/MSS.0b013e3181fc7162.
    1. Hall KS, Howe CA, Rana SR, Martin CL, Morey MC. METs and accelerometry of walking in older adults: standard versus measured energy cost. Med Sci Sports Exerc. 2013;45:574–582. doi: 10.1249/MSS.0b013e318276c73c.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37:S531–S543. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43:357–364. doi: 10.1249/MSS.0b013e3181ed61a3.
    1. Liu-Ambrose T, Eng JJ, Boyd LA, Jacova C, Davis JC, Bryan S, et al. Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment. BMC Neurol. 2010;10:14. doi: 10.1186/1471-2377-10-14.
    1. Maetzel A, Li LC, Pencharz J, Tomlinson G, Bombardier C. The economic burden associated with osteoarthritis, rheumatoid arthritis, and hypertension: a comparative study. Ann Rheum Dis. 2004;63:395–401. doi: 10.1136/ard.2003.006031.
    1. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46:153–162. doi: 10.1016/0895-4356(93)90053-4.
    1. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984;141:1356–1364. doi: 10.1176/ajp.141.11.1356.
    1. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–1037. doi: 10.1001/jama.300.9.1027.
    1. Golden CJ. Stroop color and word test: a manual for clinical and experimental uses. Wood Dale, Illinois: Stoelting Co; 1978.
    1. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72:239–252. doi: 10.1097/PSY.0b013e3181d14633.
    1. Lezak MD, Howieson DB, Loring DW. Neuropsychological assessment. 4. New York: Oxford University Press; 2004.
    1. Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19:393–394. doi: 10.1037/h0044509.
    1. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–M94. doi: 10.1093/geronj/49.2.M85.
    1. Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-minute walk test. Arch Phys Med Rehabil. 1999;80:837–841. doi: 10.1016/S0003-9993(99)90236-8.
    1. de Rotrou J, YH W, Hugonot-Diener L, Thomas-Anterion C, Vidal JS, Plichart M, et al. DAD-6: a 6-item version of the disability assessment for dementia scale which may differentiate Alzheimer's disease and mild cognitive impairment from controls. Dement Geriatr Cogn Disord. 2012;33:210–218. doi: 10.1159/000338232.
    1. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–2314. doi: 10.1212/WNL.44.12.2308.
    1. Measuring Self-Reported Population Health: An International Perspective based on EQ-5D, EuroQol Group Monographs Volume 1. edn. SpringMed Publishing; 2004.
    1. Karlawish JH, Zbrozek A, Kinosian B, Gregory A, Ferguson A, Glick HA. Preference-based quality of life in patients with Alzheimer's disease. Alzheimers Dement. 2008;4:193–202. doi: 10.1016/j.jalz.2007.11.019.
    1. Rockwood K, Joyce B, Stolee P. Use of goal attainment scaling in measuring clinically important change in cognitive rehabilitation patients. J Clin Epidemiol. 1997;50:581–588. doi: 10.1016/S0895-4356(97)00014-0.
    1. Stolee P, Rockwood K, Fox RA, Streiner DL. The use of goal attainment scaling in a geriatric care setting. J Am Geriatr Soc. 1992;40:574–578. doi: 10.1111/j.1532-5415.1992.tb02105.x.
    1. Evenson KR, Wilcox S, Pettinger M, Brunner R, King AC, McTiernan A. Vigorous leisure activity through women's adult life: the Women's Health Initiative observational cohort study. Am J Epidemiol. 2002;156:945–953. doi: 10.1093/aje/kwf132.
    1. Centers for Disease Control and Prevention. Road to Health Activities Guide. . 2008. Atlanta, U.S. Department of Health and Human Services, centers for disease control and prevention. Ref Type: Report.
    1. Sallis JF, Grossman RM, Pinski RB, Patterson TL, Nader PR. The development of scales to measure social support for diet and exercise behaviors. Prev Med. 1987;16:825–836. doi: 10.1016/0091-7435(87)90022-3.
    1. Tak EC, van Uffelen JG, Paw MJ, Van MW, Hopman-rock M. Adherence to exercise programs and determinants of maintenance in older adults with mild cognitive impairment. J Aging Phys Act. 2012;20:32–46. doi: 10.1123/japa.20.1.32.
    1. Coley N, Gardette V, Cantet C, Gillette-Guyonnet S, Nourhashemi F, Vellas B, et al. How should we deal with missing data in clinical trials involving Alzheimer's disease patients? Curr Alzheimer Res. 2011;8:421–433. doi: 10.2174/156720511795745339.
    1. Enache D, Winblad B, Aarsland D. Depression in dementia: epidemiology, mechanisms, and treatment. Curr Opin Psychiatry. 2011;24:461–472. doi: 10.1097/YCO.0b013e32834bb9d4.
    1. Solfrizzi V, D’Introno A, Colacicco AM, Capurso C, Del PA, Caselli RJ, et al. Incident occurrence of depressive symptoms among patients with mild cognitive impairment - the Italian longitudinal study on aging. Dement Geriatr Cogn Disord. 2007;24:55–64. doi: 10.1159/000103632.
    1. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 2010;9:702–716. doi: 10.1016/S1474-4422(10)70119-8.
    1. Wang L, Larson EB, Bowen JD, van Belle G. Performance-based physical function and future dementia in older people. Arch Intern Med. 2006;166:1115–1120. doi: 10.1001/archinte.166.10.1115.

Source: PubMed

3
Subscribe