COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies

Kajal Rawat, Puja Kumari, Lekha Saha, Kajal Rawat, Puja Kumari, Lekha Saha

Abstract

Coronavirus Disease 2019 named as COVID-19 imposing a huge burden on public health as well as global economies, is caused by a new strain of betacoronavirus named as SARS-CoV-2. The high transmission rate of the virus has resulted in current havoc which highlights the need for a fast and effective approach either to prevent or treat the deadly infection. Development of vaccines can be the most prominent approach to prevent the virus to cause COVID-19 and hence will play a vital role in controlling the spread of the virus and reducing mortality. The virus uses its spike proteins for entering into the host by interacting with a specific receptor called angiotensin converting enzyme-2 (ACE2) present on the surface of alveolar cells in the lungs. Researchers all over the world are targeting the spike protein for the development of potential vaccines. Here, we discuss the immunopathological basis of vaccine designing that can be approached for vaccine development against SARS-CoV-2 infection and different platforms that are being used for vaccine development. We believe this review will increase our understanding of the vaccine designing against SARS-CoV-2 and subsequently contribute to the control of SARS-CoV-2 infections. Also, it gives an insight into the current status of vaccine development and associated outcomes reported at different phases of trial.

Keywords: COVID-19; Platforms; SARS-CoV-2; Targets; Vaccine designing.

Conflict of interest statement

The authors declare no conflict of interest.

Copyright © 2020 Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1a
Fig. 1a
Schematic diagram of genomic organization or open-reading frames (ORFs) of SARS-CoV, MERS-CoV and SARS-CoV-2. Variations in accessory proteins (yellow) in all the three strains of betacoronvirus organized within structural proteins, Spike (light blue, S), envelope (green, E), membrane (dark blue, M), nucleocapsid (purple, N) and non-structural proteins expressed in ORF 1a (brown) and ORF 1b (peach) are indicated. Untranslated regions at the N and C-terminals are represented respectively as 5′-UTR and 3′-UTR; kb indicates kilo base pairs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 1b
Fig. 1b
Schematic structure of SARS-CoV-2 with its key structural proteins as target antigens for various vaccines production platforms. S protein is the major target antigen for most of the platforms except the conventional ones (Live attenuated and Inactivated vaccines) where the whole virion or the subunit of it is used to develop vaccines.
Fig. 2
Fig. 2
Schematized representation of immunopathogenesis of SARS-CoV-2. SARS-CoV-2 acting on ACE-2 receptor (A) giving rise to the cascade of pathological mechanisms including, Activating innate line of defense (1) and subsequently giving rise to Humoral response (2), leading to Antibody dependent enhancement (ADE), T cell depletion, Lymphatic organs damage and Cytokine storm.

References

    1. Adnan M., Khan S., Kazmi A., Bashir N., Siddique R. COVID-19 infection: origin , transmission , and characteristics of human coronaviruses. J. Adv. Res. 2020;24:91–98. doi: 10.1016/j.jare.2020.03.005.
    1. Ahmed S.F., Quadeer A., McKay M. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12:1–15. doi: 10.3390/v12030254.
    1. An J., et al. 2020. Clinical Characteristics of the Recovered COVID-19 Patients with Re-detectable Positive RNA Test. medRxiv.
    1. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26:450–452. doi: 10.1038/s41591-020-0820-9.
    1. Balasubramani S.P., Venkatasubramanian P., Kukkupuni S.K., Patwardhan B. Plant-based Rasayana drugs from Ayurveda. Chin. J. Integr. Med. 2011;17:88–94. doi: 10.1007/s11655-011-0659-5.
    1. Balfour H. 2020. Plant-based COVID-19 Vaccine Enters Phase I Trials. [WWW Document] accessed 10.27.20.
    1. Barría M.I., et al. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J. Infect. Dis. 2013;207:115–124. doi: 10.1093/infdis/jis641.
    1. Becker R.C. Vol. 50. 2020. pp. 499–511. (COVID-19-associated vasculitis and vasculopathy).
    1. Beyrouti R., et al. Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry. 2020;91:889–891. doi: 10.1136/jnnp-2020-323586.
    1. Bian H., Zheng Z.H., Wei D., Zhang, et al. 2020. Meplazumab Treats COVID-19 Pneumonia: an Open-labelled, Concurrent Controlled Add-on Clinical Trial. medRxiv.
    1. Cao X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020;20:269–270. doi: 10.1038/s41577-020-0308-3.
    1. Cao B., et al. A trial of lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020;1–13 doi: 10.1056/NEJMoa2001282.
    1. Carvalho A., et al. SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis: implications for detection and transmission of COVID-19 disease. Am. J. Gastroenterol. 2020;115:942–946. doi: 10.14309/ajg.0000000000000667.
    1. Cheng Y., et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829–838. doi: 10.1016/j.kint.2020.03.005.
    1. Cochrane . 2020. Cochrane COVID-19 Study Register. [WWW Document] accessed 10.29.20.
    1. CTRI/2020/05/025215 . 2020. CTRI/2020/05/025215. [WWW Document] accessed 10.25.20.
    1. CTRI/2020/07/026352 . 2020. CTRI/2020/07/026352. [WWW Document] accessed 10.25.20.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9.
    1. Dandekar A.A., Perlman S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 2005;5:917–927. doi: 10.1038/nri1732.
    1. De Wit E., Van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81.
    1. Deshmukh H.S., et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014;20:524–530. doi: 10.1038/nm.3542.
    1. D'Amico F., Baumgart D.C., Danese S., Peyrin-Biroulet L. Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention and management. Clin. Gastroenterol. Hepatol. 2020;18:1663–1672. doi: 10.1016/j.cgh.2020.04.001.
    1. Fan Y.Y., et al. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch. Virol. 2009;154:1093–1099. doi: 10.1007/s00705-009-0409-6.
    1. Folegatti P.M., et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–478. doi: 10.1016/S0140-6736(20)31604-4. Elsevier.
    1. Gao J., Tian Z., Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends. 2020;14:72–73. doi: 10.5582/BST.2020.01047.
    1. García L.F. Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol. 2020;11:1441. doi: 10.3389/fimmu.2020.01441.
    1. Gautret P., Lagier J., Parola P., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open- label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020;56(1) doi: 10.1016/j.ijantimicag.2020.105949.
    1. Geiben-Lynn R., Greenland J.R., Frimpong-Boateng K., Letvin N.L. Kinetics of recombinant adenovirus type 5, vaccinia virus, modified vaccinia ankara virus, and DNA antigen expression in vivo and the induction of memory T-lymphocyte responses. Clin. Vaccine Immunol. 2008;15:691–696. doi: 10.1128/CVI.00418-07.
    1. Govea-Alonso D.O., Cardineau G.A., Rosales-Mendoza S. In: Principles of Plant-Based Vaccines BT - Genetically Engineered Plants as a Source of Vaccines against Wide Spread Diseases: an Integrated View. Rosales-Mendoza S., editor. Springer New York; New York, NY: 2014. pp. 1–14.
    1. Gyawali R., et al. A review on ayurvedic medicinal herbs as remedial perspective for COVID-19. J. Karnali Acad. Heal. Sci. 2020;3:1–21. doi: 10.3126/jkahs.v3i0.29116.
    1. He Y., Rappuoli R., De Groot A.S., Chen R.T. Emerging vaccine informatics. J. Biomed. Biotechnol. 2010;2010 doi: 10.1155/2010/218590.
    1. Hekele A., et al. Rapidly produced SAM ® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microb. Infect. 2013;2:1–7. doi: 10.1038/emi.2013.54.
    1. Hemann E.A., Kang S.M., Legge K.L. Protective CD8 T cell mediated immunity against influenza A virus infection following influenza virus-like particle vaccination1. J. Immunol. 2013;191:2486–2494. doi: 10.1038/jid.2014.371.
    1. Holshue M.L., et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 2020;382:929–936. doi: 10.1056/NEJMoa2001191.
    1. Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020 doi: 10.1038/s41579-020-00459-7.
    1. Huang C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Hur S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 2019;37:349–375. doi: 10.1146/annurev-immunol-042718-041356.
    1. Islam M.T., et al. Natural products and their derivatives against coronavirus: a review of the non‐clinical and pre‐clinical data. Phyther. Res. 2020;34:2471–2492. doi: 10.1002/ptr.6700.
    1. Jackson L.A., et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. Mass Medical Soc. 2020;383:1920–1931. doi: 10.1056/NEJMoa2022483.
    1. Katzelnick L.C., et al. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358:929–932. doi: 10.1126/science.aan6836. 358, 929–932.
    1. Kim J.H.J.J. DNA vaccines against Influenza viruses. Vaccines Pandemic Influ. 2009;333:197–210. doi: 10.1007/978-3-540-92165-3.
    1. Kumar A., Meldgaard T.S., Bertholet S. Novel platforms for the development of a universal influenza vaccine. Front. Immunol. 2018;9:1–14. doi: 10.3389/fimmu.2018.00600.
    1. Lee D.Y.W., Li Q.Y., Liu J., Efferth T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: clinical experience and scientific basis. Phytomedicine. 2020 doi: 10.1016/j.phymed.2020.153337.
    1. Leng Z., et al. Transplantation of ACE2- Mesenchymal stem cells improves the outcome of patients with covid-19 pneumonia. Aging Dis. 2020;11:216–228. doi: 10.14336/AD.2020.0228.
    1. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020;5:562–569. doi: 10.1038/s41564-020-0688-y.
    1. Leung P.-C. The efficacy of Chinese medicine for SARS: a review of Chinese publications after the crisis. Am. J. Chin. Med. 2007;35:575–581. doi: 10.1142/S0192415X07005077.
    1. Li G., De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) Nat. Rev. Drug Discov. 2020;19:149–150. doi: 10.1038/d41573-020-00016-0.
    1. Li G., Chen X., Xu A. Profile of specific antibodies to the SARS-associated coronavirus [6] N. Engl. J. Med. 2003;349:508–509. doi: 10.1056/NEJM200307313490520.
    1. Li D., et al. Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS-COVID-19 study. Signal Transduct. Target. Ther. 2020;5:1–3. doi: 10.1038/s41392-020-0163-5.
    1. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020 doi: 10.1016/j.jpha.2020.03.001. Elsevier Ltd.
    1. Ling W. C-reactive protein levels in the early stage of COVID-19. Med. Maladies Infect. 2020;50:332–334. doi: 10.1016/j.medmal.2020.03.007.
    1. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin. Chim. Acta. 2020;506:145–148. doi: 10.1016/j.cca.2020.03.022.
    1. Liu W.J., Zhao M., Liu K., Xu K., Wong G. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antivir. Res. 2017;137:82–92. doi: 10.1016/j.antiviral.2016.11.006.
    1. Livemint . 2020. Siddha Medicine in COVID-19. [WWW Document] accessed 10.25.20.
    1. Lu R., Zhao X., Li J., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:1–3. doi: 10.1016/S0140-6736(20)30251-8.
    1. María R.R., Arturo C.J., Alicia J., Paulina M.G., Gerardo A. Vaccines. InTech; Rijeka, Croatia: 2017. The impact of bioinformatics on vaccine design and development.
    1. Marzi A., et al. Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy. J. Infect. Dis. 2011;204:S1066–S1074. doi: 10.1093/infdis/jir348.
    1. Moon C. Fighting COVID-19 exhausts T cells. Nat. Rev. Immunol. 2020;20:277. doi: 10.1101/2020.02.18.20024364.
    1. Mubarak A., Alturaiki W., Hemida M.G. Middle East respiratory syndrome coronavirus ( MERS-CoV ): infection , immunological response , and vaccine development. J. Immunol. Res. 2019;2019:1–11. doi: 10.1155/2019/6491738.
    1. Nascimento I.P., Leite L.C.C. Recombinant vaccines and the development of new vaccine strategies. Braz. J. Med. Biol. Res. 2012;45:1102–1111. doi: 10.1590/S0100-879X2012007500142.
    1. National Library Of Medicine . 2020. . [WWW Document] accessed 10.28.20.
    1. Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 2009;7:439–450. doi: 10.1038/nrmicro2147.
    1. Prompetchara E., Chutitorn Ketloy T.P. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020;38:1–9. doi: 10.12932/AP-200220-0772.
    1. Qin C., et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020;71:762–768. doi: 10.1093/cid/ciaa248.
    1. Rajkumar R.P. Ayurveda and COVID-19: where psychoneuroimmunology and the meaning response meet. Brain Behav. Immun. 2020;87:8–9. doi: 10.1016/j.bbi.2020.04.056.
    1. Rappuoli R. Reverse vaccinology. Curr. Opin. Microbiol. 2000;3:445–450. doi: 10.1016/S1369-5274(00)00119-3.
    1. Ray Anulekha. 2020. COVID-19 Vaccine may be Ready by December References. [WWW Document] accessed 10.27.20.
    1. Rodrigues T.S., et al. Inflammasome activation in COVID-19 patients. 2020. medRxiv.
    1. Rodríguez-Gascón A., del Pozo-Rodríguez A., Solinís M.Á. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int. J. Nanomed. 2014;9:1833–1843. doi: 10.2147/IJN.S39810.
    1. Roldão A., Mellado M.C.M., Castilho L.R., Carrondo M.J.T., Alves P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines. 2010;9:1149–1176. doi: 10.1586/erv.10.115.
    1. Rollier C.S., Reyes-Sandoval A., Cottingham M.G., Ewer K., Hill A.V.S. Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 2011;23:377–382. doi: 10.1016/j.coi.2011.03.006.
    1. Roncati L., Nasillo V., Lusenti B., Riva G. Signals of Th2 immune response from COVID-19 patients requiring intensive care. Ann. Hematol. 2020;99:1419–1420. doi: 10.1007/s00277-020-04066-7.
    1. Rosales-Mendoza S., Márquez-Escobar V.A., González-Ortega O., Nieto-Gómez R., Arévalo-Villalobos J.I. What does plant-based vaccine technology offer to the fight against COVID-19? Vaccines. 2020;8:183. doi: 10.3390/vaccines8020183.
    1. Sartaj Sohrab S., Suhail M., Kamal M.A., Husen A., I Azhar E. Recent development and future prospects of plant-based vaccines. Curr. Drug Metabol. 2017;18:831–841. doi: 10.2174/1389200218666170711121810.
    1. Seib K.L., Zhao X., Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin. Microbiol. Infect. 2012;18:109–116. doi: 10.1111/j.1469-0691.2012.03939.x.
    1. Sekaly R.P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp. Med. 2008;205:7–12. doi: 10.1084/jem.20072681.
    1. Sharad Sharma D.D.R. 2020. Covaxin, Bharat Biotech's Coronavirus Vaccine, Cleared for Phase 3 Trials. [WWW Document] accessed 10.24.2020.
    1. Soruban T., Rajeev S.R.P. Comparative study on pandemic crisis - Covid19 and Sri Lankan Siddha system of medicine – a literature review. EJPMR. 2020;7:292–299.
    1. Sputnik V., clinical trials . 2020. Vaccine against COVID-19: Sputnik V. [WWW Document] accessed 10.20.20.
    1. Spychalski P., Błażyńska-Spychalska A., Kobiela J. Estimating case fatality rates of COVID-19. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30246-2.
    1. Su H., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98:219–227. doi: 10.1016/j.kint.2020.04.003.
    1. Tan L., et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct. Target. Ther. 2020;5:1–3. doi: 10.1038/s41392-020-0148-4.
    1. Tang F., et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 2011;186:7264–7268. doi: 10.4049/jimmunol.0903490.
    1. Tillu G., Chaturvedi S., Chopra A., Patwardhan B. Public health approach of Ayurveda and Yoga for COVID-19 prophylaxis. J. Alternative Compl. Med. 2020;26:360–364. doi: 10.1089/acm.2020.0129.
    1. Ulrich H., Pillat M.M., Tárnok A. Dengue Fever, COVID‐19 (SARS‐CoV‐2), and Antibody‐Dependent Enhancement (ADE): A Perspective. Cytom. Part A. Wiley Online Library. 2020;97(7):662–667. doi: 10.1002/cyto.a.24047.
    1. Walls A.C., Park Y.J., Tortorici M.A., et al. Structure, function, and antigenicity of the SARS- CoV-2 spike glycoprotein. Cell. 2020;180:1–12. doi: 10.1016/j.cell.2020.02.058.
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J. Virol. 2020;94:1–9. doi: 10.1128/jvi.00127-20.
    1. Wang K., Conlon M., Ren W., Chen B.B., Bączek T. Natural products as targeted modulators of the immune system. J. Immunol. Res. 2018;2018:1–2. doi: 10.1155/2018/7862782.
    1. Wang M., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0.
    1. WHO . Who; 2020. Coronavirus Disease (COVID-19) Dashboard. [WWW Document] accessed 10.28.20.
    1. World Health Organization . 2020. Draft Landscape of COVID 19 Candidate Vaccines. [WWW Document] accessed 10.30.20.
    1. Wu A., et al. Genome composition and divergence of the novel Coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325–328. doi: 10.1016/j.chom.2020.02.001.
    1. Wu C., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020;180:934–943. doi: 10.1001/jamainternmed.2020.0994.
    1. Wu F., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3.
    1. Wu D., Yang X.O. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 2020;53:368–370. doi: 10.1016/j.jmii.2020.03.005.
    1. Xing Y., et al. Post-discharge surveillance and positive virus detection in two medical staff recovered from coronavirus disease 2019 (COVID-19), China, January to February 2020. Euro Surveill. 2020:1–5. doi: 10.2807/1560-7917.ES.2020.25.10.2000191.
    1. Xu Z., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Yang L., et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct. Target. Ther. 2020;5:1–8. doi: 10.1038/s41392-020-00243-2.
    1. Yang, Islam M.S., Wang J., Li Y., Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int. J. Biol. Sci. 2020;16:1708–1717. doi: 10.7150/ijbs.45538.
    1. Yuan J., et al. 2020. Clinical Characteristics on 25 Discharged Patients with COVID-19 Virus Returning. medRxiv.
    1. Zhang J., Ma K., Li H., Liao M., Qi W. The continuous evolution and dissemination of 2019 novel human Coronavirus. J. Infect. 2020;20:1–5. doi: 10.1016/j.jinf.2020.02.001.
    1. Zhang T., Wu Q., Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 2020;30:1346–1351. doi: 10.1016/j.cub.2020.03.022.
    1. Zhang T., Wu Q., Zhang Z. 2020. Pangolin Homology Associated with 2019-nCoV. bioRxiv.
    1. Zhao Q., Li S., Yu H., Xia N., Modis Y. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol. 2013;31:654–663. doi: 10.1016/j.tibtech.2013.09.002.
    1. Zhao Jincun, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc. Natl. Acad. Sci. U.S.A. 2014;111:4970–4975. doi: 10.1073/pnas.1323279111.
    1. Zhou F., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Zhou P., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Zhou Y., et al. Cold Spring Harbor Laboratory; 2020. Aberrant Pathogenic GM-CSF+ T Cells and Inflammatory CD14+ CD16+ Monocytes in Severe Pulmonary Syndrome Patients of a New Coronavirus. BioRxiv.
    1. Zhu F.-C., et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396(10249):479–488. doi: 10.1038/s41586-020-2639-4. Elsevier.

Source: PubMed

3
Subscribe