Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets

Aleksandr A Artyukov, Elena A Zelepuga, Larisa N Bogdanovich, Natalia M Lupach, Vyacheslav L Novikov, Tatyana A Rutckova, Emma P Kozlovskaya, Aleksandr A Artyukov, Elena A Zelepuga, Larisa N Bogdanovich, Natalia M Lupach, Vyacheslav L Novikov, Tatyana A Rutckova, Emma P Kozlovskaya

Abstract

The effect of low doses of echinochrome A (EchA), a natural polyhydroxy-1,4-naphthoquinone pigment from the sea urchin Scaphechinus mirabilis, has been studied in clinical trials, when it was used as an active substance of the drug Histochrome® and biologically active supplement Thymarin. Several parameters of lipid metabolism, antioxidant status, and the state of the immune system were analyzed in patients with cardiovascular diseases (CVD), including contaminating atherosclerosis. It has been shown that EchA effectively normalizes lipid metabolism, recovers antioxidant status and reduces atherosclerotic inflammation, regardless of the method of these preparations' administrations. Treatment of EchA has led to the stabilization of patients, improved function of the intracellular matrix and decreased epithelial dysfunction. The increased expression of surface human leukocyte antigen DR isotype (HLA-DR) receptors reflects the intensification of intercellular cooperation of immune cells, as well as an increase in the efficiency of processing and presentation of antigens, while the regulation of CD95 + expression levels suggests the stimulation of cell renewal processes. The immune system goes to a different level of functioning. Computer simulations suggest that EchA, with its aromatic structure of the naphthoquinone nucleus, may be a suitable ligand of the cytosolic aryl cell receptor, which affects the response of the immune system and causes the rapid expression of detoxification enzymes such as CYP and DT diaphorase, which play a protective role with CVD. Therefore, EchA possesses not only an antiradical effect and antioxidant activity, but is also a SOD3 mimetic, producing hydrogen peroxide and controlling the expression of cell enzymes through hypoxia-inducible factors (HIF), peroxisome proliferator-activated receptors (PPARs) and aryl hydrocarbon receptor (AhR).

Keywords: Histochrome; Thymarin; atherosclerosis; cardiovascular diseases (CVD); echinochrome A (EchA); mechanism of action; oxidative stress; polyhydroxy-1,4-naphthoquinones.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Figures

Figure 1
Figure 1
Structure of echinochrome A (EchA), K2 and C vitamins.
Figure 2
Figure 2
Indicators of lipid metabolism in patients of the control-volunteers and the main groups (before and after treatment with Histochrome, m ± SD-Standard Deviation). Abbreviations: Cholesterol: cholesterol, mmol/L; TAG: triglycerides, mmol/l; VLDL: cholesterol of very-low-density lipoproteins, mmol/L; LDL: cholesterol of low-density lipoproteins, mmol/L; HDL: cholesterol of high-density lipoproteins, mol/L; APOA1: apolipoprotein A1, g/L; AIP: (total cholesterol − HDL)/HDL. * differences with the control group were reliable at p < 0.05; ** differences before and after treatment were reliable at p < 0.05.
Figure 3
Figure 3
Relative content of lymphocytes expressing the activation and the differentiation markers in the blood in patients of the control-volunteers and experimental groups (before and after treatment with Histochrome, m ± SD). * differences with the control group were reliable at p < 0.05; ** differences before and after treatment were reliable at p < 0.05.
Figure 4
Figure 4
Spatial structural model of EchA complex with the ligand binding domain of human aryl hydrocarbon receptor (huAhR LBD). (A) Ribbon diagram of a structural model of EchA complex with huAhR LBD; EchA molecule is represented as ball and stick, colored according to elements; the hydrophobic cavity surface around the EchA is colored by aromaticity; residues involved in EchA binding represented as sticks and colored by elements. (B) A scheme of EchA intermolecular non-covalent interactions in complex with huAhR LBD; intermolecular non-covalent interactions are shown as dashed lines, and direct hydrogen bonds are colored in green; water-mediated hydrogen bonds in blue; π- alkyl, π-π stacked, and π-π T-shaped interactions in magenta.

References

    1. Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203.
    1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–874. doi: 10.1038/nature01323.
    1. Orr A.W., Yurdagul A., Jr., Patel B.M. Pathogenesis of atherosclerosis: from cell biology to therapeutics. In: Granger D.N., Granger J.P., editors. Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. Morgan & Claypool Life Sciences; Williston, VT, USA: 2014. pp. 1–125.
    1. Hansson G.K., Libby P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol. 2006;6:508–519. doi: 10.1038/nri1882.
    1. Hansson G.K., Robertson A.K., Söderberg-Naucler C. Inflammation and atherosclerosis. Annu. Rev. Pathol.: Mech. Dis. 2006;1:297–329. doi: 10.1146/annurev.pathol.1.110304.100100.
    1. Tedgui A., Mallas Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 2006;86:515–581. doi: 10.1152/physrev.00024.2005.
    1. Binder C.J., Shaw P.X., Chang M.K., Bouller A., Hartvigsen K., Hörkkö S., Miller Y.I., Woelkers D.A., Corr M., Witztum J.L. The role of natural antibodies in atherogenesis. J. Lipid Res. 2005;46:1357–1363. doi: 10.1194/jlr.R500005-JLR200.
    1. Galkina E., Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 2009;27:165–197. doi: 10.1146/annurev.immunol.021908.132620.
    1. Niessner A., Weyand C.M. Dendritic cells in atherosclerotic disease. Clin. Immunol. 2010;134:25–30. doi: 10.1016/j.clim.2009.05.006.
    1. Dumitriu I.E., Kaski J.C. The role of T and B cells in atherosclerosis: potential clinical implications. Curr. Pharm. Des. 2011;17:4159–4171. doi: 10.2174/138161211798764834.
    1. Hansson G.K., Hermansson A. The immune system in atherosclerosis. Nat. Immunol. 2011;12:204–212. doi: 10.1038/ni.2001.
    1. Perry H.M., Bender T.P., McNamara C.A. B cells subsets in atherosclerosis. Front. Immunol. 2012;3:373. doi: 10.3389/fimmu.2012.00373.
    1. Bobryshev Y.V., Karagodin V.P., Orekhov A.N. Dendritic cells and their role in immune reaction of atherosclerosis. Cell Tissue Biol. 2013;7:113–125. doi: 10.1134/S1990519X1302003X.
    1. Subramanian M., Thorp E., Hansson G.K., Tobas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Investig. 2013;123:179–188. doi: 10.1172/JCI64617.
    1. Stocker R., Keaney J.F. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004;84:1381–1478. doi: 10.1152/physrev.00047.2003.
    1. Navab M., Ananthramaiah G.M., Reddy S.T., van Lenten B.J., Ansell B.J., Fonarow G.C., Vahabzadeh K., Hama S., Hough G., Kamranpour N., et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid Res. 2004;45:993–1007. doi: 10.1194/jlr.R400001-JLR200.
    1. Granik V.G. Some chemical and biochemical aspects of the problem of atherosclerosis. Pharm. Chem. J. 2012;46:139–153. doi: 10.1007/s11094-012-0749-5.
    1. Bandeali S., Farmer J. High-density lipoprotein and atherosclerosis: the role of antioxidant activity. Curr. Atheroscler. Rep. 2012;14:101–107. doi: 10.1007/s11883-012-0235-2.
    1. Kwak B., Mulhaupt F., Myit S., Mach F. Statins as a newly recognized type of immunomodulator. Nat. Med. 2000;6:1399–1402. doi: 10.1038/82219.
    1. Gale C.R., Ashurst H.E., Powers H.J., Martyn C. Antioxidant vitamin status and carotid atherosclerosis in the elderly. Am. J. Clin. Nutr. 2001;74:402–408. doi: 10.1093/ajcn/74.3.402.
    1. Salonen R.M., Nyyssönen K., Kaikkonen J., Porkkala-Sarataho E., Voutilainen S., Rissanen T.H., Tuomainen T.P., Valkonen V.P., Ristonmaa U., Lakka H.M., et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the antioxidant supplementation in atherosclerosis prevention (ASAP) study. Circulation. 2003;107:947–953. doi: 10.1161/01.CIR.0000050626.25057.51.
    1. Cherubini A., Vigna G.B., Zuliani G., Ruggiero C., Senin U., Fellin R. Role of antioxidants in atherosclerosis: epidemiological and clinical update. Curr. Pharm. Des. 2005;11:2017–2032. doi: 10.2174/1381612054065783.
    1. Siekmeier R., Steffen C., März W. Role of oxidants and antioxidants in atherosclerosis: results of in vitro and in vivo investigations. J. Cardiovasc. Pharmacol. Ther. 2007;12:265–282. doi: 10.1177/1074248407299519.
    1. Niki E. Antioxidants and atherosclerosis. Biochem. Soc. Trans. 2004;32:156–159. doi: 10.1042/bst0320156.
    1. Marx N., Kehrle B., Kohlhammer K., Grüb M., Koenig W., Hombach V., Plutzky J. PPAR Activators as Antiinflammatory Mediators in Human T Lymphocytes. Circ. Res. 2002;90:703–710. doi: 10.1161/01.RES.0000014225.20727.8F.
    1. Martin G., Duez H., Blanquart C., Berezowski V., Poulain P., Fruchart J.C., Najib-Fruchart J., Glineur C., Staels B. Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I. J Clin. Invest. 2001;107:1423–1432. doi: 10.1172/JCI10852.
    1. Erkkilä A.T., Booth S.L. Vitamin K intake and atherosclerosis. Cur. Opin. Lipidol. 2008;19:39–42. doi: 10.1097/MOL.0b013e3282f1c57f.
    1. Beulens J.W.J., Bots M.L., Atsmaa F., Bartelinka M.-L., Prokopb M., Geleijnse J.M., Witteman J.C., Grobbee D.E., van der Schouw Y.T. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009;20:489–493. doi: 10.1016/j.atherosclerosis.2008.07.010.
    1. Schurgers L.J., Uitto J., Reutelingsperger C.P. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol. Med. 2013;19:217–226. doi: 10.1016/j.molmed.2012.12.008.
    1. Chatrou M.L.L., Winckers K., Hackeng T.M., Reutelingsperger C.P., Schurgers L. Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev. 2012;26:155–166. doi: 10.1016/j.blre.2012.03.002.
    1. Yi T., Wang J., Zhu K., Tang Y.L., Huang S., Shui X., Chen Y., Lei W. Aryl Hydrocarbon Receptor: A New Player of Pathogenesis and Therapy in Cardiovascular Diseases. BioMed Res. Int. 2018;2018:1–11. doi: 10.1155/2018/6058784.
    1. Elyakov G.B., Maksimov O.B., Mishchenko N.P., Koltsova E.A., Fedoreev S.A., Glebko L.I., Krasovskaya N.P., Artjukov A.A. Histochrome and Its Therapeutic Use in Acute Myocardial Infarction and Ischemic Heart Disease. 6,410,601. US Patent. 2001 Jun 25;
    1. Potapov V.N., Lupach N.M., Veselkina E.J., Khludeeva E.A., Artjukov A.A., Kurika A.V., Kozlovskaja E.P., Rasskazov V.A., Dolgikh S.N. Method of Lipid Metabolic Disorder Correction. 2,337,696. Russian Patent. 2008 Nov 10;
    1. Potapov V.N., Lupach N.M., Veselkina E.J., Khludeeva E.A., Artjukov A.A., Kurika A.V., Kozlovskaja E.P., Rasskazov V.A., Dolgikh S.N., Luk’janov P.A. Way of Correction of Endothelial Dysfunction. 2,359,686. Russian Patent. 2009 Jun 27;
    1. Artyukov A.A., Popov A.M., Tsybulsky A.V., Krivoshapko O.N., Polyakova N.V. Pharmacological activity of echinochrome A alone and in the biologically active additive Timarin. Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem. 2013;7:237–242. doi: 10.1134/S1990750813030025.
    1. Tsybulsky A.V., Popov A.M., Artyukov A.A., Kostetsky E.Y., Krivoshapko O.N., Maseyka A.N., Kozlovskaya E.P. The comparative study of the medical action of lyuteolin, rosmarinic acid and echinochrom A at experimental stress-induced cardiopathology. Biomeditsinskaia Khimiia. 2011;57:314–325. doi: 10.18097/pbmc20115703314.
    1. Agafonova I.G., Bogdanovich R.N., Kolosova N.G. Assessment of Nephroprotective Potential of Histochrome during Induced Arterial Hypertension. Bull. Exp. Biol. Med. 2015;160:223–227. doi: 10.1007/s10517-015-3134-z.
    1. Jeong S.H., Kim H.K., Song I.S., Noh S.J., Marquez J., Ko K., Rhee B.D., Kim N., Mishchenko N.P., Fedoreyev S.A., et al. Echinochrome A increases mitochondrial mass and function by modulating mitochondrial biogenesis regulatory genes. Mar. Drugs. 2014;12:4602–4615. doi: 10.3390/md12084602.
    1. Talalaeva O.S., Momot A.P., Bryukhanov V.M., Zverev Y.F., Zamyatina S.V., Mishenko N.P., Lycheva N.A. Effect of prolonged histochrome introduction on haemostasis in rats. Trombos Hemostas Reol. (Mosc.) 2014;2:33–36.
    1. Hasanov B.B., Ryzhov G.L., Maltseva E.B. Methods of research antioxidants. Khimiya Rastit. Syrya. 2004;3:63–75.
    1. Key J., Scheuermann T.H., Anderson P.C., Daggett V., Gardner K.H. Principles of ligand binding within a completely buried cavity in HIF2α PAS-B. J. Am. Chem. Soc. 2009;131:17647–17654. doi: 10.1021/ja9073062.
    1. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084.
    1. Eswar N., Webb B., Marti-Renom M.A., Madhusudhan M.S., Eramian D., Shen M.Y., Pieper U., Sali A. Comparative protein structure modeling using modeller. Curr. Protoc. Protein Sci. 2007;50:2.9.1–2.9.31. doi: 10.1002/0471140864.ps0209s50.
    1. Molecular Operating Environment (MOE), 2013.08. Chemical Computing Group Inc.; Montreal, QC, Canada: 2016. H3A 2R7.
    1. Case D.A., Darden T.A., Iii T.E.C., Simmerling C.L., Wang J., Duke E.H.M., Luo R., Walker R.C. Amber 12. University of California; San Francisco, CA, USA: 2012.
    1. Gerber P.R., Müller K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J. Comput. Aided Mol. Des. 1995;9:251–268. doi: 10.1007/BF00124456.
    1. MOPAC. James J.P. Stewart Computational Chemistry: Colorado Springs, CO, USA. [(accessed on 10 February 2020)];2009 Available online: .
    1. Bikadi Z., Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminf. 2009;1:1–15. doi: 10.1186/1758-2946-1-15.
    1. Afanasiev S.A., Vecherskiy Y.Y., Maksimov I.V., Markov V.A., Rebrova T.Y. Cardioprotective Effect of Antioxidant Histochrome in Cardiology and Cardiac Surgery Practice. STT; Tomsk, Russia: 2012. pp. 1–150.
    1. Tsybul’skii A.V., Popov A.M., Artiukov A.A., Mazeika A.N., Kostetskii E.A., Sanina N.M., Krivoshapko O.N. Enhancing the immunogenic activity of influvac vaccine in the use of adjuvant TI complexes modified by echinochrome A. Vopr. Virusol. 2012;57:23–27.
    1. Seneviratne A.N., Sivagurunathan B., Monaco C. Toll-like receptors and macrophage activation in atherosclerosis. Clin. Chim. Acta. 2012;413:3–14. doi: 10.1016/j.cca.2011.08.021.
    1. Fenyo I.M., Gafencu A.V. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology. 2013;218:1376–1384. doi: 10.1016/j.imbio.2013.06.005.
    1. Hanieh H. Toward understanding the role of aryl hydrocarbon receptor in the immune system: current progress and future trends. BioMed Res. Int. 2014;2014:14. doi: 10.1155/2014/520763.
    1. Barouki R., Aggerbeck M., Aggerbeck L., Coumoul X. The aryl hydrocarbon receptor system. Drug Metabol. Drug Interact. 2012;27:3–8. doi: 10.1515/dmdi-2011-0035.
    1. Hirano M., Hwang J.H., Park H.J., Bak S.M., Iwata H., Kim E.Y. In silico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-, ligand-, and species-specific activations. Environ. Sci. Technol. 2015;49:3795–3804. doi: 10.1021/es505733f.
    1. Fukunaga B.N., Probst M.R., Reisz-Porszasz S., Hankinson O. Identification of functional domains of the aryl hydrocarbon receptor. J. Biol. Chem. 1995;270:29270–29278. doi: 10.1074/jbc.270.49.29270.
    1. McGuire J., Okamoto K., Whitelaw M.L., Tanaka H., Poellinger L. Definition of a dioxin receptor mutant that is a constitutive activator of transcription: delineation of overlapping repression and ligand binding functions within the PAS domain. J. Biol. Chem. 2001;276:41841–41849. doi: 10.1074/jbc.M105607200.
    1. Seok S.-H., Lee W., Jiang L., Molugu K., Zheng A., Li Y., Park S., Bradfield C.A., Xing Y. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc. Natl. Acad. Sci. USA. 2017;114:5431–5436. doi: 10.1073/pnas.1617035114.
    1. Bonati L., Corrada D., Tagliabue S.G., Motta S. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms. Curr. Opin. Pharmacol. 2017;2:42–49. doi: 10.1016/j.cotox.2017.01.011.
    1. Motto I.A., Bordogna A.A., Soshilov M.l., Denison S., Bonati L.A. New Aryl Hydrocarbon Receptor Homology Model Targeted to Improve Docking Reliability. J. Chem. Inf. Model. 2011;51:2868–2881. doi: 10.1021/ci2001617.
    1. Pernomian L, da Silva CH Current basis for discovery and development of aryl hydrocarbon receptor antagonists for experimental and therapeutic use in atherosclerosis. Eur. J. Pharmacol. 2015;764:118–123. doi: 10.1016/j.ejphar.2015.06.058.
    1. Pandini A., Soshilov A.A., Song Y., Zhao J., Bonati L., Denison M.S. Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. Biochemistry. 2009;48:5972–5983. doi: 10.1021/bi900259z.
    1. Bisson W.H., Koch D., O’Donnell E.F., Kerkvliet N.I., Tanguay R.L., Abagyan R., Kolluri S.K. Modeling of the aryl hydrocarbon receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands. J. Med. Chem. 2009;52:5635–5641. doi: 10.1021/jm900199u.
    1. Perkins A., Phillips J.L., Kerkvliet N.I., Tanguay R.L., Perdew G.H., Kolluri S.K., Bisson W.H. A structural switch between agonist and antagonist bound conformations for a ligand-optimized model of the human aryl hydrocarbon receptor ligand binding domain. Biology. 2014;3:645–669. doi: 10.3390/biology3040645.
    1. Goryo K., Suzuki A., Carpio C.A.D., Siizaki K., Kuriyama E., Mikami Y., Kinoshita K., Yasumoto K.-I., Rannug A., Miyamoto A., et al. Identification of amino acid residues in the Ah receptor involved in ligand binding. Biochem. Biophys. Res. Commun. 2007;354:396–402. doi: 10.1016/j.bbrc.2006.12.227.
    1. Backlund M., Ingelman-Sundberg M. Different structural requirements of the ligand binding domain of the aryl hydrocarbon receptor for high- and low-affinity ligand binding and receptor activation. Mol. Pharmacol. 2004;65:416–425. doi: 10.1124/mol.65.2.416.
    1. Moura-Alves P., Fae K., Houthuys E., Dorhoi A., Kreuchwig A., Furkert J., Barison N., Diehl A., Munder A., Constant P., et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature. 2014;512:387–392. doi: 10.1038/nature13684.
    1. Lebedev A.V., Ivanova M.V., Krasnovid N.L., Koltzova E.A. Weak acid properties of hydroxylated naphthazarins and their reaction with superoxide anion-radical. Vopr. Med. Khim. 1999;45:123–130.
    1. Lebedev A.V., Ivanova M.V., Krasnovid N.L. Interaction of natural polyhydroxy-1,4-naphthoquinones with superoxide anion-radical. Biochemistry (Biokhimiia) 1999;64:1273–1278.
    1. Lebedev A.V., Ivanova M.V., Ruuge E.K. How do calcium ions induce free radical oxidation of hydroxy-1,4-naphthoquinone? Ca2+ stabilizes the naphthosemiquinone anion-radical of echinochrome A. Arch. Biochem. Biophys. 2003;413:191–198. doi: 10.1016/S0003-9861(03)00111-5.
    1. Novikov V.L., Shestak O.P., Mishchenko N.P., Fedoreev S.A., Vasileva E.A., Glazunov V.P., Artyukov A.A. Oxidation of 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (echinochrome A) by atmospheric oxygen 1. Structure of dehydroechinochrome. Russ. Chem. Bull. 2018;67:282–290. doi: 10.1007/s11172-018-2071-1.
    1. Kruger-Zeitzer E., Sullivan S.G., Stern A., Munday R. Effects of 1,4-naphthoquinone derivatives on red blood cell metabolism. J. Appl. Toxicol. 1990;10:129–133. doi: 10.1002/jat.2550100212.
    1. McMillan D.C. Role of Oxidant Stress in Lawsone-Induced Hemolytic Anemia. Toxicol. Sci. 2004;82:647–655. doi: 10.1093/toxsci/kfh288.
    1. Klotz L.-O., Hou X., Jacob C. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling. Molecules. 2014;19:14902–14918. doi: 10.3390/molecules190914902.
    1. Perry G., Epel D. Ca2+-stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs. Exp. Cell Res. 1981;134:65–72. doi: 10.1016/0014-4827(81)90463-8.
    1. Irrcher I., Ljubicic V., Hood D.A. Interactions between ROS and AMP kinase activity in the regulation of PGC-α transcription in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 2009;296:116–123. doi: 10.1152/ajpcell.00267.2007.
    1. Busquets-Cortes C., Capo X., Argelich E., Ferrer M.D., Mateos D., Bouzas C., Abbate M., Tur J.A., Sureda A., Pons A. Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome. Nutrients. 2018;10:1920. doi: 10.3390/nu10121920.
    1. Suhara T., Fukuo K., Sugimoto T., Morimoto S., Nakahashi T., Hata S., Shimizu M., Ogihara T. Hydrogen peroxide induces up-regulation of Fas in human endothelial cells. J. Immunol. 1998;160:4042–4047.
    1. Afanas’ev S.A., Lasukova T.V., Chernyavskii A.M. ATP-sparing effect of histochrome in acute myocardial ischemia in patients with coronary heart disease. B Exp. Biol. Med. 1997;124:1217–1219. doi: 10.1007/BF02445124.
    1. Waring P., Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol. Cell Biol. 1999;77:312–317. doi: 10.1046/j.1440-1711.1999.00837.x.
    1. Ball J.A., Vlisidou I., Blunt M.D., Wood W., Ward S.G. Hydrogen Peroxide Triggers a Dual Signaling Axis to Selectively Suppress Activated Human T Lymphocyte Migration. J. Immunol. 2017;198:3679–3689. doi: 10.4049/jimmunol.1600868.
    1. Kozlov V.K., Kozlov M.V., Lebedko О.А., Yephimenko M.V., Guseva O.E., Morozova N.V. Influence of echinochrome A on some parameters of systemic free-radical status and T-cell immunity under chronic inflammatory lung diseases in children at the period of remission. Far East Med. J. 2010;1:55–58.
    1. Sung D.J., So W.Y., Ryu H.Y., An H.S., Cha K.S. Induction of vasodilation by hydrogen peroxide and its application in exercise science. Biol. Sport. 2012;29:87–92. doi: 10.5604/20831862.988882.
    1. Zhu H., Li Y. NAD(P)H: quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovasc. Toxicol. 2012;12:39–45. doi: 10.1007/s12012-011-9136-9.
    1. Glazunov V.P., Berdyshev D.V., Novikov V.L. DFT study of mechanisms of the antioxidant effect of natural polyhydroxy-1,4-naphthoquinones. Reactions of echinamines A and B, metabolites of sea urchin Scaphechinus mirabilis, with hydroperoxyl radical. Russ. Chem. B. 2014;63:1993–1999. doi: 10.1007/s11172-014-0690-8.
    1. Sodergren E., Weinstock G.M., Davidson E.H., Cameron R.A., Gibbs R.A., Angerer R.C., Angerer L.M., Arnone M.I., Burgess D.R., Burke R.D., et al. The Genome of the Sea Urchin Strongylocentrotus purpuratus. Science. 2006;314:941–952. doi: 10.1126/science.1133609.
    1. Goldstone J.V., Hamdoun A., Cole B.J., Howard-Ashby M., Nebert D.W., Scally M., Dean M., Epel D., Hahn M.E., Stegeman J.J. The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev. Biol. 2006;300:366–384. doi: 10.1016/j.ydbio.2006.08.066.
    1. Beischlag T.V., Luis Morales J., Hollingshead B.D., Perdew G.H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 2008;18:207–250. doi: 10.1615/CritRevEukarGeneExpr.v18.i3.20.
    1. Jaronen M., Quintana F.J. Immunological Relevance of the Coevolution of IDO1 and AHR. Front. Immunol. 2014;5:521. doi: 10.3389/fimmu.2014.00521.
    1. Ye J., Qiu J., Bostick J.W., Ueda A., Schjerven H., Li S., Jobin C., Chen Z.E., Zhou L. The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. Cell Rep. 2017;21:2277–2290. doi: 10.1016/j.celrep.2017.10.114.
    1. Jaeger C., Tischkau S.A. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. Environ. Health Insights. 2016;10:133–141. doi: 10.4137/EHI.S38343.
    1. Khazaal A.Q., Jaeger C.D., Bottum K.M., Tischkau S.A. Environmental factors act through aryl hydrocarbon receptor activation and circadian rhythm disruption to regulate energy metabolism. J. Recept. Ligand Channel Res. 2018;10:13–24. doi: 10.2147/JRLCR.S133886.
    1. Li H., Horke S., Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol. Sci. 2013;34:313–319. doi: 10.1016/j.tips.2013.03.007.

Source: PubMed

3
Subscribe