Onchocerciasis transmission in Ghana: persistence under different control strategies and the role of the simuliid vectors

Poppy H L Lamberton, Robert A Cheke, Peter Winskill, Iñaki Tirados, Martin Walker, Mike Y Osei-Atweneboana, Nana-Kwadwo Biritwum, Anthony Tetteh-Kumah, Daniel A Boakye, Michael D Wilson, Rory J Post, María-Gloria Basañez, Poppy H L Lamberton, Robert A Cheke, Peter Winskill, Iñaki Tirados, Martin Walker, Mike Y Osei-Atweneboana, Nana-Kwadwo Biritwum, Anthony Tetteh-Kumah, Daniel A Boakye, Michael D Wilson, Rory J Post, María-Gloria Basañez

Abstract

Background: The World Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in selected African countries. Current control focuses on community-directed treatment with ivermectin (CDTI). In Ghana, persistent transmission has been reported despite long-term control. We present spatial and temporal patterns of onchocerciasis transmission in relation to ivermectin treatment history.

Methodology/principal findings: Host-seeking and ovipositing blackflies were collected from seven villages in four regions of Ghana with 3-24 years of CDTI at the time of sampling. A total of 16,443 flies was analysed for infection; 5,812 (35.3%) were dissected for parity (26.9% parous). Heads and thoraces of 12,196 flies were dissected for Onchocerca spp. and DNA from 11,122 abdomens was amplified using Onchocerca primers. A total of 463 larvae (0.03 larvae/fly) from 97 (0.6%) infected and 62 (0.4%) infective flies was recorded; 258 abdomens (2.3%) were positive for Onchocerca DNA. Infections (all were O. volvulus) were more likely to be detected in ovipositing flies. Transmission occurred, mostly in the wet season, at Gyankobaa and Bosomase, with transmission potentials of, respectively, 86 and 422 L3/person/month after 3 and 6 years of CDTI. The numbers of L3/1,000 parous flies at these villages were over 100 times the WHO threshold of one L3/1,000 for transmission control. Vector species influenced transmission parameters. At Asubende, the number of L3/1,000 ovipositing flies (1.4, 95% CI = 0-4) also just exceeded the threshold despite extensive vector control and 24 years of ivermectin distribution, but there were no infective larvae in host-seeking flies.

Conclusions/significance: Despite repeated ivermectin treatment, evidence of O. volvulus transmission was documented in all seven villages and above the WHO threshold in two. Vector species influences transmission through biting and parous rates and vector competence, and should be included in transmission models. Oviposition traps could augment vector collector methods for monitoring and surveillance.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Maps showing the location of…
Fig 1. Maps showing the location of Ghana (A), the boundaries and start dates for the Onchocerciasis Control Programme (OCP) phases (B), and the seven Ghanaian study sites (C).
The OCP began vector control operations across West Africa in 1975. Asubende received vector control from 1986, which was interrupted several times during 1987–1989 because of community trials of the impact of ivermectin mass treatment on transmission and microfilarial loads. At the time of closure of the OCP in 2002, the Asubende focus was incorporated into a special intervention zone (SIZ) due to on-going transmission. The breeding sites at Asukawkaw Ferry, Dodi Papase and Pillar 83 were first treated with larviciding insecticides during OCP experimental campaigns (reinvasion studies) in 1981 (see Fig 2 of Cheke & Garms 1983 [94]), before becoming part of the South-eastern extension, which reached these river basins when it became fully operational in February 1988.
Fig 2. Methods used to obtain host-independent…
Fig 2. Methods used to obtain host-independent (A, B) and host-dependent (C, D) adult female blackfly samples.
(A) Bellec (sticky) trap situated above rapids; (B) Monk’s Wood (light) trap placed near presumed breeding sites; (C) human-baited tent; (D) cow-baited tent. A and B illustrate traps to collect ovipositing flies; C and D depict methods to obtain host-seeking flies.
Fig 3. Proportions of infected and infective…
Fig 3. Proportions of infected and infective flies by season and sampling method for Bosomase and Gyankobaa.
Data and error bars are as in Fig 3, but excluding the 2006 Bellec-caught flies collected at Bosomase, as during the pilot study comparisons with other fly collection methods were not conducted.
Fig 4. Proportions of infected and infective…
Fig 4. Proportions of infected and infective flies (assessed by heads and thoraces dissection) in study villages and years of ivermectin treatment.
Infected flies (green bars) are those with any larval stage of Onchocerca volvulus; infective flies (blue bars) are those harbouring L3 larvae in heads and/or thoraces. Error bars are exact 95% confidence intervals. The results for Bosomase include the Bellec-caught flies obtained during the pilot study conducted at Bosomase in January–February 2006.
Fig 5. Therapeutic coverage of ivermectin treatment…
Fig 5. Therapeutic coverage of ivermectin treatment in all study villages.
The plots show the percentage of the overall population treated at each ivermectin round since mass ivermectin distribution began: (A) Asubende and (B) Agborlekame in the Brong-Ahafo Region; (C) Asukawkaw Ferry, (D) Dodi Papase and (E) Pillar 83 in the Volta Region; (F) Bosomase in the Western Region, and (G) Gyankobaa in the Ashanti Region. The dashed lines are the best fit least squares polynomial functions to the data, presented to facilitate visual inspection of the coverage trends. Biannual ivermectin distribution started in 2009 in Asubende, Agborlekame and Gyankobaa, whilst annual distribution has continued in the remaining villages.
Fig 6. Numbers of L3 larvae per…
Fig 6. Numbers of L3 larvae per 1,000 parous (host-seeking) flies or per 1,000 ovipositing flies.
Data are presented for the three villages where infective Onchocerca volvulus larvae were detected during the wet and/or dry seasons of 2009 to 2011. In all cases, except Asubende parous flies, the number of (A) O. volvulus L3 larvae per 1,000 parous or (B) O. volvulus L3 larvae per 1,000 ovipositing flies exceeds the World Health Organization (WHO) threshold for one L3 per 1,000 (parous) flies. In Asubende the value was 1.4 L3 per 1,000 ovipositing flies. Error bars are 95% CI calculated using percentile bootstrapping.

References

    1. Uniting to Combat Neglected Tropical Diseases (2012) London Declaration on Neglected Tropical Diseases. Ending the Neglect and Reaching 2020 Goals. Available: [], accessed: 04 March 2015.
    1. World Health Organization (2012) Accelerating work to overcome the global impact of neglected tropical diseases–A roadmap for implementation. Executive Summary. Available: [], accessed: 04 March 2015.
    1. Diawara L, Traoré MO, Badji A, Bissan Y, Doumbia K, et al. (2009) Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis 3: e497 10.1371/journal.pntd.0000497
    1. Traoré MO, Sarr MD, Badji A, Bissan Y, Diawara L, et al. (2012) Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PLoS Negl Trop Dis 6: e1825 10.1371/journal.pntd.0001825
    1. Tekle AH, Elhassan E, Isiyaku S, Amazigo UV, Bush S, et al. (2012) Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. Parasit Vectors 5: 28 10.1186/1756-3305-5-28
    1. Turner HC, Churcher TS, Walker M, Osei-Atweneboana MY, Prichard RK, et al. (2013) Uncertainty surrounding projections of the long-term impact of ivermectin treatment on human onchocerciasis. PLoS Negl Trop Dis 7: e2169 10.1371/journal.pntd.0002169
    1. Dadzie Y, Neira M, Hopkins D (2003) Final report of the conference on the eradicability of onchocerciasis. Filaria J 2: 2
    1. African Programme for Onchocerciasis Control (2010) Conceptual and operational framework of onchocerciasis elimination with ivermectin treatment. WHO/APOC 2010 Available: [], accessed: 01 October 2014.
    1. World Health Organization (1987) Expert Committee on Onchocerciasis Third Report. Technical Report Series 752 Geneva: WHO.
    1. World Health Organization (2001) Criteria for certification of interruption of transmission/elimination of human onchocerciasis. Report of a meeting held in Geneva, 28–29 September 2000. World Health Organization, Geneva. WHO/CDS/CPE/CEE/2001.18a. Available: [], accessed: 02 October 2014.
    1. World Health Organization (2001) Certification of elimination of human onchocerciasis: criteria and procedures. Report of a meeting held in Geneva, 28–29 September 2000. WHO/CDS/CPE/CEE/2001.18b. Available: [], accessed: 27 October 2014.
    1. Hougard JM, Alley ES, Yaméogo L, Dadzie KY, Boatin BA (2001) Eliminating onchocerciasis after 14 years of vector control: a proved strategy. J Infect Dis 184: 497–503.
    1. Boatin B (2008) The Onchocerciasis Control Programme in West Africa (OCP). Ann Trop Med Parasitol 102 Suppl 1: 13–17. 10.1179/136485908X337427
    1. Meredith SE, Dull HB (1998) Onchocerciasis: The first decade of Mectizan treatment. Parasitol Today 14: 472–474.
    1. Dull HB, Meredith SE (1998) The Mectizan Donation Programme-a 10-year report. Ann Trop Med Parasitol 92 Suppl 1: S69–71.
    1. Alley ES, Plaisier AP, Boatin BA, Dadzie KY, Remme J, et al. (1994) The impact of five years of annual ivermectin treatment on skin microfilarial loads in the onchocerciasis focus of Asubende, Ghana. Trans R Soc Trop Med Hyg 88: 581–584.
    1. Yaméogo L (2008) Special intervention zones. Ann Trop Med Parasitol 102 Suppl 1: 23–24. 10.1179/136485908X337445
    1. Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK (2007) Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369: 2021–2029.
    1. Remme J, Ba O, Dadzie KY, Karam M (1986) A force-of-infection model for onchocerciasis and its applications in the epidemiological evaluation of the Onchocerciasis Control Programme in the Volta River basin area. Bull World Health Organ 64: 667–681.
    1. Osei-Atweneboana MY, Awadzi K, Attah SK, Boakye DA, Gyapong JO, et al. (2011) Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus . PLoS Negl Trop Dis 5: e998 10.1371/journal.pntd.0000998
    1. Cupp E, Richards F, Lammie P, Eberhard M (2007) Efficacy of ivermectin against Onchocerca volvulus in Ghana. Lancet 370: 1123; author reply 1124–1125.
    1. Mackenzie CD (2007) Efficacy of ivermectin against Onchocerca volvulus in Ghana. Lancet 370: 1123; author reply 1124–1125.
    1. Remme JH, Amazigo U, Engels D, Barryson A, Yaméogo L (2007) Efficacy of ivermectin against Onchocerca volvulus in Ghana. Lancet 370: 1123–1124; author reply 1124–1125.
    1. Turner HC, Osei-Atweneboana MY, Walker M, Tettevi EJ, Churcher TS, et al. (2013) The cost of annual versus biannual community-directed treatment of onchocerciasis with ivermectin: Ghana as a case study. PLoS Negl Trop Dis 7: e2452 10.1371/journal.pntd.0002452
    1. Post RJ, Cheke RA, Boakye DA, Wilson MD, Osei-Atweneboana MY, et al. (2013) Stability and change in the distribution of cytospecies of the Simulium damnosum complex (Diptera: Simuliidae) in southern Ghana from 1971 to 2011. Parasit Vectors 6: 205 10.1186/1756-3305-6-205
    1. Lamberton PHL, Cheke RA, Walker M, Winskill P, Osei-Ateweneboana MY, et al. (2014) Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasit Vectors 7: 511
    1. Boakye DA (1993) A pictorial guide to the chromosomal identification of members of the Simulium damnosum Theobald complex in west Africa with particular reference to the Onchocerciasis Control Programme Area. Trop Med Parasitol 44: 223–244.
    1. Bellec C (1976) Capture ďadultes de Simulium damnosum Theobald, 1903 (Diptera: Simuliidae) à ľàide de plaques ďaluminium en Afrique de ľOuest. Cahiers ORSTOM. Entom Med Parasitol 14: 209–217.
    1. Service MW (1979) Light trap collections of ovipositing Simulium squamosum in Ghana. Ann Trop Med Parasitol 73: 487–490.
    1. Walsh JF (1978) Light trap studies on Simulium damnosum s.l. in Northern Ghana. Tropenmed Parasitol 29: 492–496.
    1. Walsh JF, Davies JB, Le Berre R, Garms R (1978) Standardization of criteria for assessing the effect of Simulium control in onchocerciasis control programmes. Trans R Soc Trop Med Hyg 72: 675–676.
    1. Meredith SE, Cheke RA, Garms R (1983) Variation and distribution of forms of Simulium soubrense and S. sanctipauli in West Africa. Ann Trop Med Parasitol 77: 627–640.
    1. Wilson MD, Post RJ, Gomulski LM (1993) Multivariate morphotaxonomy in the identification of adult females of the Simulium damnosum Theobald complex (Diptera: Simuliidae) in the Onchocerciasis Control Programme area of West Africa. Ann Trop Med Parasitol 87: 65–82.
    1. Dang PT, Peterson BV (1980) Pictorial keys to the main species and species groups within the Simulium damnosum Theobald complex occurring in West Africa (Diptera: Simuliidae). Tropenmed Parasitol 31: 117–120.
    1. Garms R (1978) Use of morphological characters in the study of Simulium damnosum s.l. populations in West Africa. Tropenmed Parasitol 29: 483–491.
    1. Garms R, Cheke RA (1985) Infections with Onchocerca volvulus in different members of the Simulium damnosum complex in Togo and Benin. Zeit Ange Zool 72: 479–495.
    1. Garms R, Cheke RA, Vajime C, Sowah SA (1982) The occurrence and movements of different members of the Simulium damnosum complex in Togo and Benin. Zeit Ange Zool 69: 219–236.
    1. Garms R, Zillman U (1984) Morphological identification of Simulium sanctipauli and S. yahense in Liberia and comparison of results with those of enzyme electrophoresis. Tropenmed Parasitol 35: 217–220.
    1. Kurtak DC, Raybould JN, Vajime C (1981) Wing tuft colours in the progeny of single individuals of Simulium squamosum (Enderlein). Trans R Soc Trop Med Hyg 75: 126
    1. Mank R, Wilson MD, Rubio JM, Post RJ (2004) A molecular marker for the identification of Simulium squamosum (Diptera: Simuliidae). Ann Trop Med Parasitol 98: 197–208.
    1. Quillévéré D, Sechan Y, Pendriez B (1977) [Studies on the Simulium damnosum complex in West Africa—V. Morphological identification of the females in Ivory Coast (author's transl)]. Tropenmed Parasitol 28: 244–253 [Article in French].
    1. Cheke RA, Garms R, Kerner M (1982) The fecundity of Simulium damnosum s.l. in northern Togo and infections with Onchocerca spp. Ann Trop Med Parasitol 76: 561–568.
    1. Le Berre R (1966) Contribution à l'étude biologique et écologique de Simulium damnosum Theobald, 1903 (Diptera, Simuliidae). Mém ORSTOM 17: 204 pp.
    1. Davies JB (1995) A rapid staining and clearing technique for detecting filarial larvae in alcohol-preserved vectors. Trans R Soc Trop Med Hyg 89: 280
    1. Post RJ, Crainey JL, Bivand A, Renz A (2009) Laser-assisted microdissection for the study of the ecology of parasites in their hosts. Mol Ecol Resour 9: 480–486. 10.1111/j.1755-0998.2008.02437.x
    1. Wahl G, Schibel JM (1998) Onchocerca ochengi: morphological identification of the L3 in wild Simulium damnosum s.l., verified by DNA probes. Parasitology 116: 337–348.
    1. Merriweather A, Unnasch TR (1996) Onchocerca volvulus: development of a species-specific polymerase chain reaction-based assay. Exp Parasitol 83: 164–166.
    1. Eisenbarth A, Ekale D, Hildebrandt J, Achukwi MD, Streit A, et al. (2013) Molecular evidence of 'Siisa form', a new genotype related to Onchocerca ochengi in cattle from North Cameroon. Acta Trop 127: 261–265. 10.1016/j.actatropica.2013.05.011
    1. Wahl G, Ekale D, Enyong P, Renz A (1991) The development of Onchocerca dukei and O. ochengi microfilariae to infective-stage larvae in Simulium damnosum s.l. and in members of the S. medusaeforme group, following intra-thoracic injection. Ann Trop Med Parasitol 85: 329–337.
    1. Fischer P, Rubaale T, Meredith SE, Büttner DW (1996) Sensitivity of a polymerase chain reaction-based assay to detect Onchocerca volvulus DNA in skin biopsies. Parasitol Res 82: 395–401.
    1. Morales-Hojas R, Cheke RA, Post RJ (2006) Molecular systematics of five Onchocerca species (Nematoda: Filarioidea) including the human parasite, O. volvulus, suggest sympatric speciation. J Helminthol 80: 281–290.
    1. Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95: 111–127.
    1. Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26: 404–413.
    1. Philippon B (1977) Etude de la transmission d'Onchocerca volvulus (Leuckart, 1893) (Nematoda, Onchocercidae) par Simulium damnosum Theobald, 1903 (Diptera: Simuliidae) en Afrique tropicale. Trav Doc ORSTOM 63: 308 pp.
    1. Renz A (1987) Studies on the dynamics of transmission of onchocerciasis in a Sudan-savanna area of North Cameroon III. Infection rates of the Simulium vectors and Onchocerca volvulus transmission potentials. Ann Trop Med Parasitol 81: 239–252.
    1. Cheke RA, Garms R (2013) Indices of onchocerciasis transmission by different members of the Simulium damnosum complex conflict with the paradigm of forest and savanna parasite strains. Acta Trop 125: 43–52. 10.1016/j.actatropica.2012.09.002
    1. Barbiero VK, Trpis M (1984) Transmission of onchocerciasis by local blackflies on the Firestone Rubber Plantation, Harbel, Liberia. Am J Trop Med Hyg 33: 586–594.
    1. Garms R (1987) Infection rates and parasitic loads of Onchocerca volvulus, and other filariae, in Simulium sanctipauli s.l. and S. yahense in a rain-forest area of Liberia. Trop Med Parasitol 38: 201–204.
    1. Duke BOL (1975) The differential dispersal of nulliparous and parous Simulium damnosum . Tropenmed Parasitol 26: 88–97.
    1. Duke BOL (1973) Studies on factors influencing the transmission of onchocerciasis. VIII. The escape of infective Onchocerca volvulus larvae from feeding 'forest' Simulium damnosum . Ann Trop Med Parasitol 67: 95–99.
    1. R_Development_Core_Team (2008) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria.
    1. Davison AC, Hinkley DV (1997) Bootstrap methods and their application: Cambridge: Cambridge University Press.
    1. Basáñez MG, Boussinesq M (1999) Population biology of human onchocerciasis. Philos Trans R Soc Lond B Biol Sci 354: 809–826.
    1. Katabarwa MN, Eyamba A, Nwane P, Enyong P, Kamgno J, et al. (2013) Fifteen years of annual mass treatment of onchocerciasis with ivermectin have not interrupted transmission in the west region of Cameroon. J Parasitol Res 2013: 420928 10.1155/2013/420928
    1. Katabarwa MN, Eyamba A, Nwane P, Enyong P, Yaya S, et al. (2011) Seventeen years of annual distribution of ivermectin has not interrupted onchocerciasis transmission in North Region, Cameroon. Am J Trop Med Hyg 85: 1041–1049. 10.4269/ajtmh.2011.11-0333
    1. Yaya G, Kobangué L, Kémata B, Gallé D, Grésenguet G (2014) Élimination ou contrôle de l’onchocercose en Afrique? Cas du village de Gami en République Centrafricaine. Bull Soc Pathol Exot 107: 188–193. 10.1007/s13149-014-0363-8
    1. Katabarwa M, Richards F (2014) Twice-yearly ivermectin for onchocerciasis: the time is now. Lancet Infect Dis 14: 373–374. 10.1016/S1473-3099(14)70732-7
    1. Achukwi MD, Harnett W, Renz A (2000) Onchocerca ochengi transmission dynamics and the correlation of O. ochengi microfilaria density in cattle with the transmission potential. Vet Res 31: 611–621.
    1. Wahl G, Ekale D, Schmitz A (1998) Onchocerca ochengi: assessment of the Simulium vectors in north Cameroon. Parasitology 116: 327–336.
    1. Toè L, Merriweather A, Unnasch TR (1994) DNA probe-based classification of Simulium damnosum s.l.-borne and human-derived filarial parasites in the onchocerciasis control program area. Am J Trop Med Hyg 51: 676–683.
    1. Garms R, Walsh JF, Davies JB (1979) Studies on the reinvasion of the Onchocerciasis Control Programme in the Volta River Basin by Simulium damnosum s.I. with emphasis on the south-western areas. Tropenmed Parasitol 30: 345–362.
    1. Cheke RA, Fiasorgbor GK, Walsh JF, Yameogo L (2008) Elimination of the Djodji form of the blackfly Simulium sanctipauli sensu stricto as a result of larviciding by the WHO Onchocerciasis Control Programme in West Africa. Med Vet Entomol 22: 172–174. 10.1111/j.1365-2915.2008.00725.x
    1. Cheke RA, Denke AM (1988) Anthropophily, zoophily and roles in onchocerciasis transmission of the Djodji form of Simulium sanctipauli and S. squamosum in a forest zone of Togo. Trop Med Parasitol 39: 123–127.
    1. Basáñez MG, Pion SDS, Boakes E, Filipe JAN, Churcher TS, et al. (2008) Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infect Dis 8: 310–322. 10.1016/S1473-3099(08)70099-9
    1. Turner HC, Walker M, Churcher TS, Osei-Atweneboana MY, Biritwum NK, et al. (2014) Reaching the London declaration on neglected tropical diseases goals for onchocerciasis: an economic evaluation of increasing the frequency of ivermectin treatment in Africa. Clin Infect Dis 59: 923–932. 10.1093/cid/ciu467
    1. Kutin K, Kruppa TF, Brenya R, Garms R (2004) Efficiency of Simulium sanctipauli as a vector of Onchocerca volvulus in the forest zone of Ghana. Med Vet Entomol 18: 167–173.
    1. Garms R, Badu K, Owusu-Dabo E, Baffour-Awuah S, Adjei O, et al. (2015) Assessments of the transmission of Onchocerca volvulus by Simulium sanctipauli in the Upper Denkyira District, Ghana, and the intermittent disappearance of the vector. Parasitol Res 114: 1129–1137. 10.1007/s00436-014-4287-9
    1. Plaisier AP, van Oortmarssen GJ, Habbema JD, Remme J, Alley ES (1990) ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis. Comput Methods Programs Biomed 31: 43–56.
    1. Plaisier AP, Alley ES, van Oortmarssen GJ, Boatin BA, Habbema JDF (1997) Required duration of combined annual ivermectin treatment and vector control in the Onchocerciasis Control Programme in West Africa. Bull World Health Organ 75: 237–245.
    1. Winnen M, Plaisier AP, Alley ES, Nagelkerke NJ, van Oortmarssen G, et al. (2002) Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bull World Health Organ 80: 384–391.
    1. Filipe JAN, Boussinesq M, Renz A, Collins RC, Vivas-Martinez S, et al. (2005) Human infection patterns and heterogeneous exposure in river blindness. Proc Natl Acad Sci U S A 102: 15265–15270.
    1. Duerr HP, Eichner M (2010) Epidemiology and control of onchocerciasis: the threshold biting rate of savannah onchocerciasis in Africa. Int J Parasitol 40: 641–650. 10.1016/j.ijpara.2009.10.016
    1. Duerr HP, Raddatz G, Eichner M (2011) Control of onchocerciasis in Africa: threshold shifts, breakpoints and rules for elimination. Int J Parasitol 41: 581–589. 10.1016/j.ijpara.2010.12.009
    1. Davies JB (1993) Description of a computer model of forest onchocerciasis transmission and its application to field scenarios of vector control and chemotherapy. Ann Trop Med Parasitol 87: 41–63.
    1. Demanou M, Enyong P, Pion SD, Basáñez MG, Boussinesq M (2003) Experimental studies on the transmission of Onchocerca volvulus by its vector in the Sanaga valley (Cameroon): Simulium squamosum B. Intake of microfilariae and their migration to the haemocoel of the vector. Ann Trop Med Parasitol 97: 381–402.
    1. Soumbey-Alley E, Basáñez MG, Bissan Y, Boatin BA, Remme JH, et al. (2004) Uptake of Onchocerca volvulus (Nematoda: Onchocercidae) by Simulium (Diptera: Simuliidae) is not strongly dependent on the density of skin microfilariae in the human host. J Med Entomol 41: 83–94.
    1. Cheke RA, Basáñez MG, Perry M, White MT, Garms R, et al. (2015) Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philos Trans R Soc Lond B 370: 20130559.
    1. Yaméogo L, Toé L, Hougard JM, Boatin BA, Unnasch TR (1999) Pool screen polymerase chain reaction for estimating the prevalence of Onchocerca volvulus infection in Simulium damnosum sensu lato: results of a field trial in an area subject to successful vector control. Am J Trop Med Hyg 60: 124–128.
    1. Basáñez MG, Rodríguez-Pérez MA, Reyes-Villanueva F, Collins RC, Rodríguez MH (1998) Determination of sample sizes for the estimation of Onchocerca volvulus (Filarioidea: Onchocercidae) infection rates in biting populations of Simulium ochraceum s.l. (Diptera: Simuliidae) and its application to ivermectin control programs. J Med Entomol 35: 745–757.
    1. Rodríguez-Pérez MA, Adeleke MA, Burkett-Cadena ND, Garza-Hernández JA, Reyes-Villanueva F, et al. (2013) Development of a novel trap for the collection of black flies of the Simulium ochraceum complex. PLoS One 8: e76814 10.1371/journal.pone.0076814
    1. Rodríguez-Pérez MA, Adeleke MA, Rodríguez-Luna IC, Cupp EW, Unnasch TR (2014) Evaluation of a community-based trapping program to collect Simulium ochraceum sensu lato for verification of onchocerciasis elimination. PLoS Negl Trop Dis 8: e3249 10.1371/journal.pntd.0003249
    1. Toè LD, Koala L, Burkett-Cadena ND, Traoré BM, Sanfo M, et al. (2014) Optimization of the Esperanza window trap for the collection of the African onchocerciasis vector Simulium damnosum sensu lato. Acta Trop 137: 39–43. 10.1016/j.actatropica.2014.04.029
    1. Cheke RA, Sowah SA, Avissey HS, Fiasorgbor GK, Garms R (1992) Seasonal variation in onchocerciasis transmission by Simulium squamosum at perennial breeding sites in Togo. Trans R Soc Trop Med Hyg 86: 67–71.
    1. Cheke RA, Garms R (1983) Reinfestations of the southeastern flank of the Onchocerciasis Control Programme area by windborne vectors. Philos Trans R Soc Lond B Biol Sci 302: 471–484.
    1. De Sole G, Accorsi S, Cresveaux H, Remme J, Walsh F, et al. (1992) Distribution and severity of onchocerciasis in southern Benin, Ghana and Togo. Acta Trop 52: 87–97.

Source: PubMed

3
Subscribe