Aldose reductase, oxidative stress, and diabetic mellitus

Wai Ho Tang, Kathleen A Martin, John Hwa, Wai Ho Tang, Kathleen A Martin, John Hwa

Abstract

Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.

Keywords: aldose reductase; atherosclerosis; diabetes mellitus; oxidative stress; thrombosis.

Figures

Figure 1
Figure 1
Role of aldose reductase (AR) in hyperglycemia-induced oxidative stress. Excessive amount of glucose is shunted to the polyol pathway, where AR reduces glucose into sorbitol at the expense of NADPH. Since NADPH is essential for generation of GSH (intracellular antioxidant) from GSSG, the depletion of NADPH by the AR pathway may impair intracellular antioxidant defense. Sorbitol is then converted to fructose by SDH with the production of NADH, potentially leading to increased ROS via NADH oxidase.
Figure 2
Figure 2
Glucose flux through the polyol pathway has been associated with the pathogenesis of diabetic complications via several potential mechanisms. Intracellular accumulation of sorbitol causes osmotic stress. The end production of the polyol pathway, fructose, is converted to fructose-6-phosphate (F-6-P) by hexokinase, and is further converted to glucosamine-6-phosphate by glutamine: fructose-6-phosphate amidotransferase (GFAT). Fructose-6-phosphate may also form fructose-1,6-bisphosphate (F-1,6-P), which is converted to dihydroxyacetone phosphate (DHAP). DHAP and glyceraldehdye-3-phosphate (GA3P) are interconvertible by triosephosphate isomerase. They can lead to the formation of methylglyoxal, resulting in advanced glycation end-product. DHAP can further be converted to diacylglycerol (DAG), leading to PKC activation. The continuous conversion of glycerol-3-phosphate (G-3-P) to DHAP results in concomitant transfer of electrons from reduced cytosolic NADH to mitochondrial oxidized FAD, which can generate high mitochondrial membrane potentials and inhibition of the electron transport chain at complex III. The oxidation of NADH by NADH oxidase produces reactive oxygen species (ROS), which can attack the mitochondrial membrane.

References

    1. American Diabetes Association. (2000). Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care 23(Suppl. 1), S27–S31
    1. American Diabetes Association. (2003). Implications of the diabetes control and complications trial. Diabetes Care 26(Suppl. 1), S25–S2710.2337/diacare.26.2007.S25
    1. Ananthakrishnan R., Kaneko M., Hwang Y. C., Quadri N., Gomez T., Li Q., Caspersen C., Ramasamy R. (2009). Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Am. J. Physiol. Heart Circ. Physiol. 296, H333–H34110.1152/ajpheart.01012.2008
    1. Andersen K., Hurlen M., Arnesen H., Seljeflot I. (2002). Aspirin non-responsiveness as measured by PFA-100 in patients with coronary artery disease. Thromb. Res. 108, 37–4210.1016/S0049-3848(02)00405-X
    1. Ansari N. H., Bhatnagar A., Liu S. Q., Srivastava S. K. (1991). Purification and characterization of aldose reductase and aldehyde reductase from human kidney. Biochem. Int. 25, 755–765
    1. Beyer-Mears A., Ku L., Cohen M. P. (1984). Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes 33, 604–60710.2337/diabetes.33.6.604
    1. Boden G., Rao A. K. (2007). Effects of hyperglycemia and hyperinsulinemia on the tissue factor pathway of blood coagulation. Curr. Diab. Rep. 7, 223–22710.1007/s11892-007-0034-2
    1. Boyle J. P., Honeycutt A. A., Narayan K. M., Hoerger T. J., Geiss L. S., Chen H., Thompson T. J. (2001). Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care 24, 1936–194010.2337/diacare.24.11.1936
    1. Buchanan M. R., Brister S. J. (1995). Individual variation in the effects of ASA on platelet function: implications for the use of ASA clinically. Can. J. Cardiol. 11, 221–227
    1. Cheng H. M., Gonzalez R. G. (1986). The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metab. Clin. Exp. 35, 10–1410.1016/0026-0495(86)90180-0
    1. Cheung A. K., Fung M. K., Lo A. C., Lam T. T., So K. F., Chung S. S., Chung S. K. (2005). Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 54, 3119–312510.2337/diabetes.54.11.3119
    1. Corder C. N., Braughler J. M., Culp P. A. (1979). Quantitative histochemistry of the sorbitol pathway in glomeruli and small arteries of human diabetic kidney. Folia Histochem. Cytochem. (Krakow) 17, 137–145
    1. Cromlish J. A., Flynn T. G. (1983). Purification and characterization of two aldose reductase isoenzymes from rabbit muscle. J. Biol. Chem. 258, 3416–3424
    1. Cromlish J. A., Yoshimoto C. K., Flynn T. G. (1985). Purification and characterization of four NADPH-dependent aldehyde reductases from pig brain. J. Neurochem. 44, 1477–148410.1111/j.1471-4159.1985.tb08786.x
    1. Das B., Srivastava S. K. (1985a). Purification and properties of aldehyde reductases from human placenta. Biochim. Biophys. Acta 840, 324–33310.1016/0304-4165(85)90212-0
    1. Das B., Srivastava S. K. (1985b). Purification and properties of aldose reductase and aldehyde reductase II from human erythrocyte. Arch. Biochem. Biophys. 238, 670–67910.1016/0003-9861(85)90213-9
    1. Diagnosis and classification of diabetes mellitus. (2007). Diabetes Care 30(Suppl. 1), S42–S710.2337/dc07-0016
    1. Dong F., Ren J. (2007). Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism. J. Hypertens. 25, 2138–214710.1097/HJH.0b013e32828626d1
    1. Drel V. R., Pacher P., Ali T. K., Shin J., Julius U., El-Remessy A. B., Obrosova I. G. (2008). Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int. J. Mol. Med. 21, 667–676
    1. Drel V. R., Pacher P., Stevens M. J., Obrosova I. G. (2006). Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. Free Radic. Biol. Med. 40, 1454–146510.1016/j.freeradbiomed.2005.12.034
    1. El-Kabbani O., Ruiz F., Darmanin C., Chung R. P. (2004). Aldose reductase structures: implications for mechanism and inhibition. Cell. Mol. Life Sci. 61, 750–76210.1007/s00018-003-3403-2
    1. Flynn T. G. (1982). Aldehyde reductases: monomeric NADPH-dependent oxidoreductases with multifunctional potential. Biochem. Pharmacol. 31, 2705–271210.1016/0006-2952(82)90123-X
    1. Galvez A. S., Ulloa J. A., Chiong M., Criollo A., Eisner V., Barros L. F., Lavandero S. (2003). Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J. Biol. Chem. 278, 38484–3849410.1074/jbc.M211824200
    1. Giannoukakis N. (2006). Drug evaluation: ranirestat – an aldose reductase inhibitor for the potential treatment of diabetic complications. Curr. Opin. Investig. Drugs 7, 916–923
    1. Giannoukakis N. (2008). Ranirestat as a therapeutic aldose reductase inhibitor for diabetic complications. Expert Opin. Investig. Drugs 17, 575–58110.1517/13543784.17.4.575
    1. Gonzalez R. G., Barnett P., Aguayo J., Cheng H. M., Chylack L. T., Jr. (1984). Direct measurement of polyol pathway activity in the ocular lens. Diabetes 33, 196–19910.2337/diabetes.33.2.196
    1. Greene D. A., Lattimer S. A., Sima A. A. (1987). Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N. Engl. J. Med. 316, 599–60610.1056/NEJM198703053161007
    1. Grotemeyer K. H. (1991). Effects of acetylsalicylic acid in stroke patients. Evidence of nonresponders in a subpopulation of treated patients. Thromb. Res. 63, 587–59310.1016/0049-3848(91)90085-B
    1. Grotemeyer K. H., Scharafinski H. W., Husstedt I. W. (1993). Two-year follow-up of aspirin responder and aspirin non responder. A pilot-study including 180 post-stroke patients. Thromb. Res. 71, 397–40310.1016/0049-3848(93)90164-J
    1. Grundmann K., Jaschonek K., Kleine B., Dichgans J., Topka H. (2003). Aspirin non-responder status in patients with recurrent cerebral ischemic attacks. J. Neurol. 250, 63–6610.1007/s00415-003-0954-y
    1. Haffner S. M., Lehto S., Ronnemaa T., Pyorala K., Laakso M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–23410.1056/NEJM199807233390404
    1. Hamada Y., Araki N., Koh N., Nakamura J., Horiuchi S., Hotta N. (1996a). Rapid formation of advanced glycation end products by intermediate metabolites of glycolytic pathway and polyol pathway. Biochem. Biophys. Res. Commun. 228, 539–54310.1006/bbrc.1996.1695
    1. Hamada Y., Araki N., Horiuchi S., Hotta N. (1996b). Role of polyol pathway in nonenzymatic glycation. Nephrol. Dial. Transplant. 11(Suppl. 5), 95–9810.1093/ndt/11.supp9.95
    1. Hamada Y., Nakamura J. (2004). Clinical potential of aldose reductase inhibitors in diabetic neuropathy. Treat. Endocrinol. 3, 245–25510.2165/00024677-200403040-00006
    1. Hamada Y., Nakamura J., Naruse K., Komori T., Kato K., Kasuya Y., Nagai R., Horiuchi S., Hotta N. (2000). Epalrestat, an aldose reductase ihibitor, reduces the levels of Nepsilon-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients. Diabetes Care 23, 1539–154410.2337/diacare.23.10.1539
    1. Hara T., Nakamura J., Koh N., Sakakibara F., Hamada Y., Sasaki H., Naruse K., Nakashima E., Takeuchi N., Inukai S. (1995). An aldose reductase inhibitor, TAT, reduces ADP-induced platelet hyperaggregation in streptozotocin-induced diabetic rats with neuropathy. J. Lab. Clin. Med. 126, 541–547
    1. Heather L. C., Clarke K. (2011). Metabolism, hypoxia and the diabetic heart. J. Mol. Cell. Cardiol. 50, 598–60510.1016/j.yjmcc.2011.01.007
    1. Helgason C. M., Bolin K. M., Hoff J. A., Winkler S. R., Mangat A., Tortorice K. L., Brace L. D. (1994). Development of aspirin resistance in persons with previous ischemic stroke. Stroke 25, 2331–233610.1161/01.STR.25.12.2331
    1. Hers H. G. (1956). The mechanism of the transformation of glucose in fructose in the seminal vesicles. Biochim. Biophys. Acta 22, 202–20310.1016/0006-3002(56)90247-5
    1. Ho E. C., Lam K. S., Chen Y. S., Yip J. C., Arvindakshan M., Yamagishi S., Yagihashi S., Oates P. J., Ellery C. A., Chung S. S., Chung S. K. (2006). Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 55, 1946–195310.2337/db05-1497
    1. Ho H. T., Chung S. K., Law J. W., Ko B. C., Tam S. C., Brooks H. L., Knepper M., Chung S. S. (2000). Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Mol. Cell. Biol. 20, 5840–584610.1128/MCB.20.16.5840-5846.2000
    1. Hotta N., Koh N., Sakakibara F., Nakamura J., Hamada Y., Hara T., Takeuchi N., Inukai S., Kasama N., Fukasawa H., Kakuta H. (1995). An aldose reductase inhibitor, TAT, prevents electroretinographic abnormalities and ADP-induced hyperaggregability in streptozotocin-induced diabetic rats. Eur. J. Clin. Invest. 25, 948–95410.1111/j.1365-2362.1995.tb01972.x
    1. Hwang Y. C., Bakr S., Ellery C. A., Oates P. J., Ramasamy R. (2003). Sorbitol dehydrogenase: a novel target for adjunctive protection of ischemic myocardium. FASEB J. 17, 2331–2333
    1. Hwang Y. C., Kaneko M., Bakr S., Liao H., Lu Y., Lewis E. R., Yan S., Ii S., Itakura M., Rui L., Skopicki H., Homma S., Schmidt A. M., Oates P. J., Szabolcs M., Ramasamy R. (2004). Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J. 18, 1192–119910.1096/fj.03-1400com
    1. Ishii H., Tada H., Isogai S. (1998). An aldose reductase inhibitor prevents glucose-induced increase in transforming growth factor-beta and protein kinase C activity in cultured mesangial cells. Diabetologia 41, 362–36410.1007/s001250050916
    1. Iwata K., Matsuno K., Nishinaka T., Persson C., Yabe-Nishimura C. (2006). Aldose reductase inhibitors improve myocardial reperfusion injury in mice by a dual mechanism. J. Pharmacol. Sci. 102, 37–4610.1254/jphs.FP0060218
    1. Iwata K., Nishinaka T., Matsuno K., Kakehi T., Katsuyama M., Ibi M., Yabe-Nishimura C. (2007). The activity of aldose reductase is elevated in diabetic mouse heart. J. Pharmacol. Sci. 103, 408–41610.1254/jphs.FP0070136
    1. Iwata N., Inazu N., Satoh T. (1990). The purification and properties of aldose reductase from rat ovary. Arch. Biochem. Biophys. 282, 70–7710.1016/0003-9861(90)90088-G
    1. Jennings P. E., Nightingale S., Le Guen C., Lawson N., Williamson J. R., Hoffman P., Barnett A. H. (1990). Prolonged aldose reductase inhibition in chronic peripheral diabetic neuropathy: effects on microangiopathy. Diabet. Med. 7, 63–6810.1111/j.1464-5491.1990.tb02141.x
    1. Johnson B. F., Nesto R. W., Pfeifer M. A., Slater W. R., Vinik A. I., Chyun D. A., Law G., Wackers F. J., Young L. H. (2004). Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 27, 448–45410.2337/diacare.27.2.624
    1. Kaiserova K., Tang X. L., Srivastava S., Bhatnagar A. (2008). Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J. Biol. Chem. 283, 9101–911210.1074/jbc.M709671200
    1. Kapor-Drezgic J., Zhou X., Babazono T., Dlugosz J. A., Hohman T., Whiteside C. (1999). Effect of high glucose on mesangial cell protein kinase C-delta and -epsilon is polyol pathway-dependent. J. Am. Soc. Nephrol. 10, 1193–1203
    1. Kasajima H., Yamagishi S., Sugai S., Yagihashi N., Yagihashi S. (2001). Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch. 439, 46–5410.1007/s004280100444
    1. Kawamura N., Ookawara T., Suzuki K., Konishi K., Mino M., Taniguchi N. (1992). Increased glycated Cu,Zn-superoxide dismutase levels in erythrocytes of patients with insulin-dependent diabetis mellitus. J. Clin. Endocrinol. Metab. 74, 1352–135410.1210/jc.74.6.1352
    1. Kawasaki N., Tanimoto T., Tanaka A. (1989). Characterization of aldose reductase and aldehyde reductase from rat testis. Biochim. Biophys. Acta 996, 30–3610.1016/0167-4838(89)90090-3
    1. Kennedy A. L., Lyons T. J. (1997). Glycation, oxidation, and lipoxidation in the development of diabetic complications. Metab. Clin. Exp. 46, 14–2110.1016/S0026-0495(97)90143-8
    1. Kessler L., Wiesel M. L., Attali P., Mossard J. M., Cazenave J. P., Pinget M. (1998). Von Willebrand factor in diabetic angiopathy. Diabetes Metab. 24, 327–336
    1. Kinoshita J. H., Merola L. O., Satoh K., Dikmak E. (1962). Osmotic changes caused by the accumulation of dulcitol in the lenses of rats fed with galactose. Nature 194, 1085–108710.1038/1941085a0
    1. Lee A. Y., Chung S. K., Chung S. S. (1995). Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. U.S.A. 92, 2780–278410.1073/pnas.92.17.7882
    1. Lee A. Y., Chung S. S. (1999). Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 13, 23–30
    1. Liu H., Luo Y., Zhang T., Wu Q., Yuan L., Chung S. S., Oates P. J., Yang J. Y. (2011). Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice. Diabetologia 54, 1242–125110.1007/s00125-011-2237-y
    1. Macchi L., Christiaens L., Brabant S., Sorel N., Allal J., Mauco G., Brizard A. (2002). Resistance to aspirin in vitro is associated with increased platelet sensitivity to adenosine diphosphate. Thromb. Res. 107, 45–4910.1016/S0049-3848(02)00210-4
    1. Marshall P. W., Williams A. J., Dixon R. M., Growcott J. W., Warburton S., Armstrong J., Moores J. (1997). A comparison of the effects of aspirin on bleeding time measured using the Simplate method and closure time measured using the PFA-100, in healthy volunteers. Br. J. Clin. Pharmacol. 44, 151–15510.1046/j.1365-2125.1997.00639.x
    1. May J., Loesche W., Heptinstall S. (1990). Glucose increases spontaneous platelet aggregation in whole blood. Thromb. Res. 59, 489–49510.1016/0049-3848(90)90409-6
    1. Morgan P. E., Dean R. T., Davies M. J. (2002). Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch. Biochem. Biophys. 403, 259–26910.1016/S0003-9861(02)00222-9
    1. Morjana N. A., Flynn T. G. (1989). Aldose reductase from human psoas muscle. Purification, substrate specificity, immunological characterization, and effect of drugs and inhibitors. J. Biol. Chem. 264, 2906–2911
    1. Morre D. M., Lenaz G., Morre D. J. (2000). Surface oxidase and oxidative stress propagation in aging. J. Exp. Biol. 203, 1513–1521
    1. Morrison A. D., Clements R. S., Jr., Travis S. B., Oski F., Winegrad A. I. (1970). Glucose utilization by the polyol pathway in human erythrocytes. Biochem. Biophys. Res. Commun. 40, 199–20510.1016/0006-291X(70)91066-1
    1. Mullarkey C. J., Edelstein D., Brownlee M. (1990). Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 173, 932–93910.1016/S0006-291X(05)80875-7
    1. Nambu H., Kubo E., Takamura Y., Tsuzuki S., Tamura M., Akagi Y. (2008). Attenuation of aldose reductase gene suppresses high-glucose-induced apoptosis and oxidative stress in rat lens epithelial cells. Diabetes Res. Clin. Pract. 82, 18–2410.1016/j.diabres.2008.03.023
    1. Nishikawa T., Edelstein D., Du X. L., Yamagishi S., Matsumura T., Kaneda Y., Yorek M. A., Beebe D., Oates P. J., Hammes H. P., Giardino I., Brownlee M. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–79010.1038/35008121
    1. Noh H., King G. L. (2007). The role of protein kinase C activation in diabetic nephropathy. Kidney Int. Suppl. 106, S49–S5310.1038/sj.ki.5002386
    1. Oates P. J., Mylari B. L. (1999). Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin. Investig. Drugs 8, 2095–211910.1517/13543784.8.12.2095
    1. Obrosova I. G., Minchenko A. G., Vasupuram R., White L., Abatan O. I., Kumagai A. K., Frank R. N., Stevens M. J. (2003). Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52, 864–87110.2337/diabetes.52.3.864
    1. Obrosova I. G., Pacher P., Szabo C., Zsengeller Z., Hirooka H., Stevens M. J., Yorek M. A. (2005). Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 54, 234–24210.2337/diabetes.54.12.3435
    1. Ohta M., Tanimoto T., Tanaka A. (1991). Localization, isolation and properties of three NADPH-dependent aldehyde reducing enzymes from dog kidney. Biochim. Biophys. Acta 1078, 395–40310.1016/0167-4838(91)90162-S
    1. Pappas J. M., Westengard J. C., Bull B. S. (1994). Population variability in the effect of aspirin on platelet function. Implications for clinical trials and therapy. Arch. Pathol. Lab. Med. 118, 801–804
    1. Petrash J. M., Srivastava S. K. (1982). Purification and properties of human liver aldehyde reductases. Biochim. Biophys. Acta 707, 105–11410.1016/0167-4838(82)90402-2
    1. Price S. A., Agthong S., Middlemas A. B., Tomlinson D. R. (2004). Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 53, 1851–185610.2337/diabetes.53.6.1452
    1. Purves T., Middlemas A., Agthong S., Jude E. B., Boulton A. J., Fernyhough P., Tomlinson D. R. (2001). A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 15, 2508–251410.1096/fj.01-0253hyp
    1. Ramana K. V., Friedrich B., Bhatnagar A., Srivastava S. K. (2003). Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-alpha in human lens epithelial cells. FASEB J. 17, 315–31710.1096/fj.02-0722com
    1. Ramana K. V., Friedrich B., Tammali R., West M. B., Bhatnagar A., Srivastava S. K. (2005). Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 54, 818–82910.2337/diabetes.54.3.818
    1. Ramasamy R., Oates P. J., Schaefer S. (1997). Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 46, 292–30010.2337/diabetes.46.2.292
    1. Ramirez M. A., Borja N. L. (2008). Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 28, 646–65510.1592/phco.28.5.646
    1. Reddy A. B., Ramana K. V., Srivastava S., Bhatnagar A., Srivastava S. K. (2009). Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-alpha via protein kinase C-delta and TNF-alpha converting enzyme in vascular smooth muscle cells. Endocrinology 150, 63–7410.1210/en.2008-0677
    1. Rubler S., Dlugash J., Yuceoglu Y. Z., Kumral T., Branwood A. W., Grishman A. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–60210.1016/0002-9149(72)90595-4
    1. Schmidt A. M., Hori O., Brett J., Yan S. D., Wautier J. L., Stern D. (1994). Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler. Thromb. 14, 1521–152810.1161/01.ATV.14.10.1521
    1. Schulz C., Leuschen N. V., Frohlich T., Lorenz M., Pfeiler S., Gleissner C. A., Kremmer E., Kessler M., Khandoga A. G., Engelmann B., Ley K., Massberg S., Arnold G. J. (2010). Identification of novel downstream targets of platelet glycoprotein VI activation by differential proteome analysis: implications for thrombus formation. Blood 115, 4102–411010.1182/blood-2009-07-230268
    1. Shinmura K., Bolli R., Liu S. Q., Tang X. L., Kodani E., Xuan Y. T., Srivastava S., Bhatnagar A. (2002). Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ. Res. 91, 240–24610.1161/01.RES.0000029970.97247.57
    1. Song Z., Fu D. T., Chan Y. S., Leung S., Chung S. S., Chung S. K. (2003). Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol. Cell. Neurosci. 23, 638–64710.1016/S1044-7431(03)00096-4
    1. Srivastava S., Ramana K. V., Tammali R., Srivastava S. K., Bhatnagar A. (2006). Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells. Diabetes 55, 901–91010.2337/diabetes.55.04.06.db05-0932
    1. Srivastava S. K., Ansari N. H., Hair G. A., Das B. (1984). Aldose and aldehyde reductases in human tissues. Biochim. Biophys. Acta 800, 220–22710.1016/0304-4165(84)90399-4
    1. Steele J. W., Faulds D., Goa K. L. (1993). Epalrestat. A review of its pharmacology, and therapeutic potential in late-onset complications of diabetes mellitus. Drugs Aging 3, 532–55510.2165/00002512-199303050-00007
    1. Sun W., Oates P. J., Coutcher J. B., Gerhardinger C., Lorenzi M. (2006). A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes 55, 2757–276210.2337/diabetes.55.03.06.db05-1418
    1. Tang W. H., Kravtsov G. M., Sauert M., Tong X. Y., Hou X. Y., Wong T. M., Chung S. K., Man Chung S. S. (2010). Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins. J. Mol. Cell. Cardiol. 49, 58–6910.1016/j.yjmcc.2009.12.003
    1. Tang W. H., Stitham J., Gleim S., Di Febbo C., Porreca E., Fava C., Tacconelli S., Capone M., Evangelista V., Levantesi G., Wen L., Martin K., Minuz P., Rade J., Patrignani P., Hwa J. (2011). Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J. Clin. Invest. 121, 4462–447610.1172/JCI59291
    1. Tang W. H., Wu S., Wong T. M., Chung S. K., Chung S. S. (2008). Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic. Biol. Med. 45, 602–61010.1016/j.freeradbiomed.2008.05.003
    1. Tawata M., Aida K., Noguchi T., Ozaki Y., Kume S., Sasaki H., Chin M., Onaya T. (1992). Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur. J. Pharmacol. 212, 87–9210.1016/0014-2999(92)90076-G
    1. Terubayashi H., Sato S., Nishimura C., Kador P. F., Kinoshita J. H. (1989). Localization of aldose and aldehyde reductase in the kidney. Kidney Int. 36, 843–85110.1038/ki.1989.270
    1. Tesfamariam B., Palacino J. J., Weisbrod R. M., Cohen R. A. (1993). Aldose reductase inhibition restores endothelial cell function in diabetic rabbit aorta. J. Cardiovasc. Pharmacol. 21, 205–21110.1097/00005344-199302000-00004
    1. Van den Enden M. K., Nyengaard J. R., Ostrow E., Burgan J. H., Williamson J. R. (1995). Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 36, 1675–1685
    1. Vander Jagt D. L., Hunsaker L. A., Robinson B., Stangebye L. A., Deck L. M. (1990a). Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms. J. Biol. Chem. 265, 10912–10918
    1. Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. (1990b). Aldose reductase from human skeletal and heart muscle. Interconvertible forms related by thiol-disulfide exchange. J. Biol. Chem. 265, 20982–20987
    1. Varma S. D., Kinoshita J. H. (1974). The absence of cataracts in mice with congenital hyperglycemia. Exp. Eye Res. 19, 577–58210.1016/0014-4835(74)90095-5
    1. Vedantham S., Noh H., Ananthakrishnan R., Son N., Hallam K., Hu Y., Yu S., Shen X., Rosario R., Lu Y., Ravindranath T., Drosatos K., Huggins L. A., Schmidt A. M., Goldberg I. J., Ramasamy R. (2011). Human aldose reductase expression accelerates atherosclerosis in diabetic apolipoprotein E-/- mice. Arterioscler. Thromb. Vasc. Biol. 31, 1805–181310.1161/ATVBAHA.111.226902
    1. Vikramadithyan R. K., Hu Y., Noh H. L., Liang C. P., Hallam K., Tall A. R., Ramasamy R., Goldberg I. J. (2005). Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J. Clin. Invest. 115, 2434–244310.1172/JCI24819
    1. Wang X., Martindale J. L., Liu Y., Holbrook N. J. (1998). The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem. J. 333(Pt 2), 291–300
    1. Wermuth B., Burgisser H., Bohren K., von Wartburg J. P. (1982). Purification and characterization of human-brain aldose reductase. Eur. J. Biochem. 127, 279–28410.1111/j.1432-1033.1982.tb06867.x
    1. Wiernsperger N. F. (2003). Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab. 29, 579–58510.1016/S1262-3636(03)72791-8
    1. Wilson G., Perry T. (2009). Is tight glycemic control in type 2 diabetes really worthwhile? No. Can. Fam. Physician. 55, 581–588
    1. Wolff S. P., Dean R. T. (1987). Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem. J. 245, 243–250
    1. Yabe-Nishimura C. (1998). Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev. 50, 21–33
    1. Yagihashi S., Yamagishi S. I., Wada Ri R., Baba M., Hohman T. C., Yabe-Nishimura C., Kokai Y. (2001). Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 124, 2448–245810.1093/brain/124.12.2448
    1. Yim M. B., Yim H. S., Lee C., Kang S. O., Chock P. B. (2001). Protein glycation: creation of catalytic sites for free radical generation. Ann. N. Y. Acad. Sci. 928, 48–5310.1111/j.1749-6632.2001.tb05634.x
    1. Zatechka D. S., Jr., Kador P. F., Garcia-Castineiras S., Lou M. F. (2003). Diabetes can alter the signal transduction pathways in the lens of rats. Diabetes 52, 1014–102210.2337/diabetes.52.4.1014
    1. Zimmermann N., Wenk A., Kim U., Kienzle P., Weber A.-A., Gams E., Schrör K., Hohlfeld T. (2003). Functional and biochemical evaluation of platelet aspirin resistance after coronary artery bypass surgery. Circulation 108, 542–54710.1161/01.CIR.0000081770.51929.5A

Source: PubMed

3
Subscribe