Literature Review on Needs of Upper Limb Prosthesis Users

Francesca Cordella, Anna Lisa Ciancio, Rinaldo Sacchetti, Angelo Davalli, Andrea Giovanni Cutti, Eugenio Guglielmelli, Loredana Zollo, Francesca Cordella, Anna Lisa Ciancio, Rinaldo Sacchetti, Angelo Davalli, Andrea Giovanni Cutti, Eugenio Guglielmelli, Loredana Zollo

Abstract

The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.

Keywords: PNS-based prosthesis; grasping; patient needs; prosthesis requirements; upper limb prosthesis.

Figures

Figure 1
Figure 1
Levels of upper limb absence.
Figure 2
Figure 2
Statistics on level of upper limb absence in Italy and United Kingdom.
Figure 3
Figure 3
Most advanced commercially available prosthetic hands.
Figure 4
Figure 4
Flowchart of the search and inclusion process.
Figure 5
Figure 5
Block scheme of the PNS-based control of a prosthetic system.

References

    1. Antfolk C., D'Alonzo M., Rosen B., Lundborg G., Sebelius F., Cipriani C. (2013). Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices. 10, 45–54. 10.1586/erd.12.68
    1. Atkins D. J., Heard D. C. Y., Donovan W. H. (1996). Epidemiologic overview of individuals with upper limb loss and their reported research priorities. J. Prosthet. Orthot. 8, 2–11. 10.1097/00008526-199600810-00003
    1. Atzori M., Muller H. (2015). Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9:162. 10.3389/fnsys.2015.00162
    1. Belter J. T., Segil J. L., Dollar A. M., Weir R. F. (2013). Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50, 599–618. 10.1682/JRRD.2011.10.0188
    1. Biddiss E. A., Chau T. T. (2007). Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31, 236–257. 10.1080/03093640600994581
    1. Biddiss E., Beaton D., Chau T. (2007). Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 346–357. 10.1080/17483100701714733
    1. Blough D. K., Hubbard S., McFarland L. V., Smith D. G., Gambel J. M., Reiber G. E. (2010). Prosthetic cost projections for service members with major limb loss from Vietnam and OIF/OEF. J. Rehabil. Res. Dev. 47, 387–402. 10.1682/JRRD.2009.04.0037
    1. Bouffard J., Vincent C., Boulianne E., Lajoie S., Mercier C. (2012). Interactions between the phantom limb sensations, prosthesis use, and rehabilitation as seen by amputees and health professionals. J. Prosthet. Orthot. 24, 25–33. 10.1097/JPO.0b013e318240d171
    1. Castellini C., Artemiadis P., Wininger M., Ajoudani A., Alimusaj M., Bicchi A., et al. . (2014). Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front. Neurorobot. 8:22. 10.3389/fnbot.2014.00022
    1. Cho E., Chen R., Merhi L.-K., Xiao Z., Pousett B., Menon C. (2016). Force myography to control robotic upper extremity prostheses: a feasibility study. Front. Bioeng. Biotechnol. 4:18. 10.3389/fbioe.2016.00018
    1. Clement R. G. E., Bugler K. E., Oliver C. W. (2011). Bionic prosthetic hands: a review of present technology and future aspirations. Surgeon 9, 336–340. 10.1016/j.surge.2011.06.001
    1. Cloutier A., Yang J. (2013). Design, control, and sensory feedback of externally powered hand prostheses: a literature review. Crit. Rev. Biomed. Eng. 41, 161–181. 10.1615/CritRevBiomedEng.2013007887
    1. Davalli A., Sacchetti R. (2009). Le protesi di Arto, in Trattato di Medicina Riabilitativa – cap.25 (Naples: Idelson Gnocchi; ).
    1. Dhillon G. S., Horch K. W. (2005). Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472. 10.1109/TNSRE.2005.856072
    1. Dhillon G. S., Lawrence S. M., Hutchinson D. T., Horch K. W. (2004). Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J. Hand Surg. Am. 29, 605–615. 10.1016/j.jhsa.2004.02.006
    1. Dohnalek P., Gajdos P., Peterek T. (2013). Human activity recognition on raw sensors data via sparse approximation, in Proceedings of the 36th International Conference on Telecommunications and Signal Processing (Rome: ), 700–703.
    1. Engdahl S. M., Christie B. P., Kelly B., Davis A., Chestek C. A., Gates D. H. (2015). Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J. Neuroeng. Rehabil. 12:53. 10.1186/s12984-015-0044-2
    1. Fougner A., Stavdahl O., Kyberd P. J., Losier Y. G., Parker P. (2012). Control of upper limb prostheses: terminology and proportional myoelectric control: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 663–677. 10.1109/TNSRE.2012.2196711
    1. Fraser C. (1993). A survey of users of upper limb prostheses. Br. J. occup. Ther. 56, 166–168. 10.1177/030802269305600503
    1. Fraser C. M. (1998). An evaluation of the use made of cosmetic and functional prostheses by unilateral upper limb amputees. Prosthet. Orthot. Int. 22, 216–223.
    1. Frontera W. R., Silver J. K. (2014). Fondamenti di Medicina Fisica e Riabilitativa. Rome: Verducci Editore.
    1. Fumero R., Costantino M. L. (2001). Organi artificiali, in Storia della Bioingegneria, ed Patron (Bologna: ), 341–365.
    1. Gonzales D. S., Castellini C. (2013). A realistic implementation of ultrasound imaging as a human-machine interface for upper limb amputees. Front. Neurorobot. 7:17. 10.3389/fnbot.2013.00017
    1. Heckathorne C. W. (1994). Expert analysis of the TIRR National Upper limb Amputee Database, in Archived at The Institute for Rehabilitation and Research in Houston (Houston: ).
    1. Heger H., Millstein S., Hunter G. A. (1985). Electrically powered prostheses for the adult with an upper limb amputation. J. Bone Joint Surg. 67B, 278–281.
    1. Hijjawi J. B., Kuiken T. A., Lipschutz R. D., Miller L. A., Stubblefield K. A., Dumanian G. A. (2006). Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast. Reconstr. Surg. 118, 1573–1578. 10.1097/01.prs.0000242487.62487.fb
    1. Jang C. H., Yang H. S., Yang H. E., Lee S. Y., Kwon J. W., Yun B. D., et al. . (2011). A survey on activities of daily living and occupations of upper extremity amputees. Ann. Rehabil. Med. 35, 907–921. 10.5535/arm.2011.35.6.907
    1. Jiang N., Farina D. (2014). Myoelectric control of upper limb prosthesis: current status, challenges and recent advances. Front. Neuroeng. Conference Abstract: MERIDIAN 30M Workshop. 10.3389/conf.fneng.2014.11.00004. [Epub ahead of print].
    1. Kejlaa G. H. (1993). Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthet. Orthot. Int. 17, 157–163. 10.3109/03093649309164376
    1. Østlie K., Lesjø I. M., Franklin R. J., Garfelt B., Skjeldal O. H., Magnus P. (2012). Prosthesis use in adult acquired major upper-limb amputees: patterns of wear, prosthetic skills and the actual use of prostheses in activities of daily life. Disabil. Rehabil. Assist. Technol. 7, 479–493. 10.3109/17483107.2011.653296
    1. Kyberd P. J., Hill W. (2007). Survey of upper limb prosthesis users in sweden and the United Kingdom. J. Prosthet. Orthot. 19, 55–66. 10.1177/0309364611409099
    1. Li N., Yang D., Jiang L., Liu H., Cai H. (2012). Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. J. Bionic Eng. 9, 39–47. 10.1016/S1672-6529(11)60095-4
    1. Lindner H., Nätterlund B. S., Hermansson L. M. N. (2010). Upper limb prosthetic outcome measures: review and content comparison based on international classification of functioning, disability and health. Prosthet. Orthot. Int. 34, 109–128. 10.3109/03093641003776976
    1. Lucchetti M., Cutti A. G., Verni G., Sacchetti R., Rossi N. (2015). Impact of michelangelo prosthetic hand: findings from a crossover longitudinal study. J. Rehabil. Res. Dev. 52, 605–618. 10.1682/JRRD.2014.11.0283
    1. Miller L. A., Stubblefield K. A., Lipschutz R. D., Lock B. A., Kuiken T. A. (2008). Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 46–50. 10.1109/TNSRE.2007.911817
    1. Navarro X., Krueger T. B., Lago N., Micera S., Stieglitz T., Dario P. (2005). A critical review of interfaces with the peripheral nervous system for te control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258. 10.1111/j.1085-9489.2005.10303.x
    1. Ortiz-Catalan M., Hakansson B., Branemark R. (2014). An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6:257re6. 10.1126/scitranslmed.3008933
    1. Pasquina P. F., Evangelista M., Carvalho A. J., Lockhart J., Griffin S., Nanos G., et al. . (2015). First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods 244, 85–93. 10.1016/j.jneumeth.2014.07.016
    1. Peerdeman B., Boere D., Witteveen H. J. B., Hermens H. J., Stramigioli S., Rietman J. S., et al. . (2011). Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48, 719–737. 10.1682/JRRD.2010.08.0161
    1. Polasek K. H., Hoyen H. A., Keith M. W., Kirsch R. F., Tyler D. J. (2009). Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 428–437. 10.1109/TNSRE.2009.2032603
    1. Pylatiuk C., Schultz S., Doderlein L. (2007). Results on internet survey of myoelectric prosthetic hand users. Prosthet. Orthot. Int. 31, 362–370. 10.1080/03093640601061265
    1. Raspopovic S., Capogrosso M., Petrini F. M., Bonizzato M., Rigosa J., Di Pino G., et al. . (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6:222ra19. 10.1126/scitranslmed.3006820
    1. Rossini P. M., Micera S., Benvenuto A., Carpaneto J., Cavallo G., Citi L., et al. . (2010). Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783. 10.1016/j.clinph.2010.01.001
    1. Schofield J. S., Evans K. R., Carey J. P., Hebert J. S. (2014). Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev. Med. Devices 11, 499–511. 10.1586/17434440.2014.929496
    1. Schultz A. E., Kuiken T. A. (2011). Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. Phys. Med. Rehabil. 3, 55–67. 10.1016/j.pmrj.2010.06.016
    1. Scott R. N., Parker P. A. (1988). Myoelectric prostheses: state of the art. J. Med. Eng. Technol. 12, 143–151. 10.3109/03091908809030173
    1. Tan D. W., Schiefer M. A., Keith M. W., Anderson J. R., Tyler J., Tyler D. J. (2014). A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6:257ra138. 10.1126/scitranslmed.3008669
    1. Van Lunteren A., Van Lunteren-Gerritsen G. N. M., Stassen N. C., Zuithoff M. J. (1983). A field evaluation of arm prostheses for unilateral amputees. Prosthet. Orthot. Int. 7, 141–151. 10.3109/03093648309166586
    1. Weaver S. A., Lange L. R., Vogts V. M. (1988). Comparison of myoelectric and conventional prostheses for adolescent amputees. Br. J. Occup. Ther. 42, 87–91. 10.5014/ajot.42.2.87
    1. Wininger M., Kim N. H., Craelius W. (2008). Pressure signature of fore-arm as predictor of grip force. J. Rehabil. Res. Dev. 45, 883–892. 10.1682/JRRD.2007.11.0187
    1. Wright T. W., Hagen A. D., Wood M. B. (1995). Prosthetic usage in major upper extremity amputations. J. Hand Surg. 20A, 619–622. 10.1016/S0363-5023(05)80278-3
    1. Ziegler-Graham K., MacKensie E. J., Ephraim P. L., Travison T. G., Brookmeyer R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429. 10.1016/j.apmr.2007.11.005

Source: PubMed

3
Subscribe