Implementation of 3D Printing Technology in the Field of Prosthetics: Past, Present, and Future

Albert Manero, Peter Smith, John Sparkman, Matt Dombrowski, Dominique Courbin, Anna Kester, Isaac Womack, Albert Chi, Albert Manero, Peter Smith, John Sparkman, Matt Dombrowski, Dominique Courbin, Anna Kester, Isaac Womack, Albert Chi

Abstract

There is an interesting and long history of prostheses designed for those with upper-limb difference, and yet issues still persist that have not yet been solved. Prosthesis needs for children are particularly complex, due in part to their growth rates. Access to a device can have a significant impact on a child's psychosocial development. Often, devices supporting both cosmetic form and user function are not accessible to children due to high costs, insurance policies, medical availability, and their perceived durability and complexity of control. These challenges have encouraged a grassroots effort globally to offer a viable solution for the millions of people living with limb difference around the world. The innovative application of 3D printing for customizable and user-specific hardware has led to open-source Do It Yourself "DIY" production of assistive devices, having an incredible impact globally for families with little recourse. This paper examines new research and development of prostheses by the maker community and nonprofit organizations, as well as a novel case study exploring the development of technology and the training methods available. These design efforts are discussed further in the context of the medical regulatory framework in the United States and highlight new associated clinical studies designed to measure the quality of life impact of such devices.

Keywords: 3D printing; cooperative expression; gamification; prosthetics.

Conflict of interest statement

The authors declare no personal conflict of interest, but want to disclose that the Limbitless Solutions organization has received support from the 3D printer manufacturer Stratasys.

Figures

Figure 1
Figure 1
The Robohand assistive device, first made available for 3D printing globally via Thingiverse. Image from the Food and Drug Administration https://www.flickr.com/photos/fdaphotos/9564033498.
Figure 2
Figure 2
The Raptor reloaded hand by Enable available for download via Thingiverse. (a) Exploded view of design and user assembly methods. (b) Completed assembly of device. https://www.thingiverse.com/thing:476403.
Figure 3
Figure 3
The Cyborg Beast by Creighton University’s Jorge M. Zuniga and available on Thingiverse https://www.thingiverse.com/thing:261462. (a) Personalized assembled device. (b) A group of assembled hands featuring different cosmetic treatments.
Figure 4
Figure 4
Overview of design process and methodology from design generation, user participation, and interdisciplinary manufacturing.
Figure 5
Figure 5
(Left) Example interactive web page for children to customize color and effect regions during the design process, and how user participation can be translated to (Right) the final design with artistic input from art team and production teams. Sleeve design made in partnership with Riot Games.
Figure 6
Figure 6
3D-printed electromyographic actuated limb device with interchangeable artistic covers from Limbitless Solutions at the University of Central Florida. (a) Warrior class, (b) Ethereal class, (c) Serenity class, and (d) Shadow class.

References

    1. Thurston A.J. Paré and prosthetics: the early history of artificial limbs. ANZ J. Surg. 2007;77:1114–1119. doi: 10.1111/j.1445-2197.2007.04330.x.
    1. Zuo K.J., Olson J.L. The evolution of functional hand replacement: From iron prostheses to hand transplantation. Plast. Surg. 2014;22:44–51. doi: 10.1177/229255031402200111.
    1. Norton K. A brief history of prosthetics. InMotion. 2007;17:11–13.
    1. Cordella F., Ciancio A.L., Sacchetti R., Davalli A., Cutti A.G., Guglielmelli E., Zollo L. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 2016;10:209. doi: 10.3389/fnins.2016.00209.
    1. Atkins D.J., Heard D.C., Donovan W.H. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. JPO J. Prosthet. Orthot. 1996;8:2–11. doi: 10.1097/00008526-199600810-00003.
    1. Ziegler-Graham K., MacKenzie E.J., Ephraim P.L., Travison T.G., Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008;89:422–429. doi: 10.1016/j.apmr.2007.11.005.
    1. Frontera W.R., Silver J.K. Fondamenti di Medicina Fisica e Riabilitativa. Verduci; Rome, Italy: 2004.
    1. International Clearinghouse for Birth Defects Surveillance and Research Annual Report 2010. International Clearinghouse for Birth Defects Surveillance and Research; Rome, Italy: 2011. Technical Report.
    1. Stoll C., Alembik Y., Dott B., Roth M.P. Associated malformations in patients with limb reduction deficiencies. Eur. J. Med. Genet. 2010;53:286–290. doi: 10.1016/j.ejmg.2010.07.012.
    1. Cignini P., Giorlandino C., Padula F., Dugo N., Cafà E.V., Spata A. Epidemiology and risk factors of amniotic band syndrome, or ADAM sequence. J. Prenat. Med. 2012;6:59.
    1. Kim K., Wang Y., Kirby R.S., Druschel C.M. Prevalence and trends of selected congenital malformations in New York State, 1983 to 2007. Birth Defects Res. Part A Clin. Mol. Teratol. 2013;97:619–627. doi: 10.1002/bdra.23160.
    1. Parker S.E., Mai C.T., Canfield M.A., Rickard R., Wang Y., Meyer R.E., Anderson P., Mason C.A., Collins J.S., Kirby R.S., et al. Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. Part A Clin. Mol. Teratol. 2010;88:1008–1016. doi: 10.1002/bdra.20735.
    1. Stoll C. The northeastern France birth defects monitoring system. Prog. Clin. Biol. Res. 1985;163:157–162.
    1. Vasluian E., van der Sluis C.K., van Essen A.J., Bergman J.E., Dijkstra P.U., Reinders-Messelink H.A., de Walle H.E. Birth prevalence for congenital limb defects in the northern Netherlands: A 30-year population-based study. BMC Musculoskelet. Disord. 2013;14:323. doi: 10.1186/1471-2474-14-323.
    1. Raichle K.A., Hanley M.A., Molton I., Kadel N.J., Campbell K., Phelps E., Ehde D., Smith D.G. Prosthesis use in persons with lower-and upper-limb amputation. J. Rehabil. Res. Dev. 2008;45:961. doi: 10.1682/JRRD.2007.09.0151.
    1. Wright T.W., Hagen A.D., Wood M.B. Prosthetic usage in major upper extremity amputations. J. Hand Surg. 1995;20:619–622. doi: 10.1016/S0363-5023(05)80278-3.
    1. Herberts P., Körner L., Caine K., Wensby L. Rehabilitation of unilateral below-elbow amputees with myoelectric prostheses. Scand. J. Rehabil. Med. 1980;12:123–128.
    1. Davidson J. A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J. Hand Ther. 2002;15:62–70. doi: 10.1053/hanthe.2002.v15.01562.
    1. Schoppen T., Boonstra A., Groothoff J.W., de Vries J., Göeken L.N., Eisma W.H. Physical, Mental, and Social Predictors of Functional Outcome in Unilateral Lower-Limb Amputees1. Arch. Phys. Med. Rehabil. 2003;84:803–811. doi: 10.1016/S0003-9993(02)04952-3.
    1. Pezzin L.E., Dillingham T.R., MacKenzie E.J., Ephraim P., Rossbach P. Use and satisfaction with prosthetic limb devices and related services 1. Arch. Phys. Med. Rehabil. 2004;85:723–729. doi: 10.1016/j.apmr.2003.06.002.
    1. Buffart L.M., Roebroeck M.E., Van Heijningen V.G., Pesch-Batenburg J.M., Stam H.J. Evaluation of arm and prosthetic functioning in children with a congenital transverse reduction deficiency of the upper limb. J. Rehabil. Med. 2007;39:379–386. doi: 10.2340/16501977-0068.
    1. Tolsma M., Meeuwisse-de Vries B., Pesch-Batenburg J., Rol M., Arendzen J., Roebroeck M., et al. Level of functioning of adolescents and young adults with a congenital reduction deficiency of the upper limb. [Het niveau van functioneren van adolescenten en jongvolwassenen met een congenitaal reductiedefect van de arm] Revalidata. 2003;25:18–21.
    1. Kuyper M., Breedijk M., Mulders A., Post M., Prevo A. Prosthetic management of children in The Netherlands with upper limb deficiencies. Prosthet. Orthot. Int. 2001;25:228–234. doi: 10.1080/03093640108726606.
    1. Silcox D.H., Rooks M.D., Vogel R.R., Fleming L.L. Myoelectric prostheses. A long-term follow-up and a study of the use of alternate prostheses. JBJS. 1993;75:1781–1789. doi: 10.2106/00004623-199312000-00007.
    1. Biddiss E., Chau T. Upper-limb prosthetics: Critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 2007;86:977–987. doi: 10.1097/PHM.0b013e3181587f6c.
    1. Allin S., Eckel E., Markham H., Brewer B.R. Recent trends in the development and evaluation of assistive robotic manipulation devices. Phys. Med. Rehabil. Clin. 2010;21:59–77. doi: 10.1016/j.pmr.2009.09.001.
    1. Pullin G. Design Meets Disability. MIT Press; Cambridge, MA, USA: 2009.
    1. Donovan-Hall M., Yardley L., Watts R. Engagement in activities revealing the body and psychosocial adjustment in adults with a trans-tibial prosthesis. Prosthet. Orthot. Int. 2002;26:15–22. doi: 10.1080/03093640208726617.
    1. Gallagher P., Maclachlan M. Adjustment to an artificial limb: A qualitative perspective. J. Health Psychol. 2001;6:85–100. doi: 10.1177/135910530100600107.
    1. Murray C.D. The social meanings of prosthesis use. J. Health Psychol. 2005;10:425–441. doi: 10.1177/1359105305051431.
    1. Murray C.D. Being like everybody else: The personal meanings of being a prosthesis user. Disabil. Rehabil. 2009;31:573–581. doi: 10.1080/09638280802240290.
    1. Biddiss E., Beaton D., Chau T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2007;2:346–357. doi: 10.1080/17483100701714733.
    1. Biddiss E.A., Chau T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 2007;31:236–257. doi: 10.1080/03093640600994581.
    1. Crandall R.C., Tomhave W. Pediatric unilateral below-elbow amputees: Retrospective analysis of 34 patients given multiple prosthetic options. J. Pediatr. Orthop. 2002;22:380–383. doi: 10.1097/01241398-200205000-00023.
    1. Goffman E. Stigma: Notes on the Management of Spoiled Identity. Simon and Schuster; New York, NY, USA: 2009.
    1. Frank G. Beyond stigma: Visibility and self-empowerment of persons with congenital limb deficiencies. J. Soc. Issues. 1988;44:95–115. doi: 10.1111/j.1540-4560.1988.tb02051.x.
    1. Huang J.N., Park I., Ellingson E., Littlepage L.E., Pellman D. Activity of the APCCdh1 form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p. J. Cell Biol. 2001;154:85–94. doi: 10.1083/jcb.200102007.
    1. Mason C.Y., Thormann M.S., Steedly K.M. How Students with Disabilities Learn in and Through the Arts: An Investigation of Educator Perceptions. VSA Arts; Washington, DC, USA: 2004.
    1. Clements I.P. How Prosthetic Limbs Work. How Stuff Works; [(accessed on 27 February 2019)]. Available online: .
    1. Ariyanto M., Munadi, Haryadi G.D., Ismail R., Pakpahan J.A., Mustaqim K.A. A low cost anthropomorphic prosthetic hand using DC micro metal gear motor; Proceedings of the 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE); Semarang, Indonesia. 19–20 October 2016; pp. 42–46.
    1. Weir A.S. Push Button Means for Operating Power-Driven Artificial Hands. 2,679,649. U.S. Patent. 1954 Jun 1;
    1. Carey S.L., Lura D.J., Highsmith M.J. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. J. Rehabil. Res. Dev. 2015;52:247–263. doi: 10.1682/JRRD.2014.08.0192.
    1. Nelson V.S., Flood K.M., Bryant P.R., Huang M.E., Pasquina P.F., Roberts T.L. Limb deficiency and prosthetic management. 1. Decision making in prosthetic prescription and management. Arch. Phys. Med. Rehabil. 2006;87:3–9. doi: 10.1016/j.apmr.2005.11.022.
    1. Antfolk C., D’Alonzo M., Rosen B., Lundborg G., Sebelius F., Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices. 2013;10:45–54. doi: 10.1586/erd.12.68.
    1. Weiss L.D., Weiss J.M., Silver J.K. Easy EMG: A Guide to Performing Nerve Conduction Studies and Electromyography. Elsevier Health Sciences; Amsterdam, The Netherlands: 2015.
    1. Nishikawa D., Yu W., Maruishi M., Watanabe I., Yokoi H., Mano Y., Kakazu Y. On-line learning based electromyogram to forearm motion classifier with motor skill evaluation. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2000;43:906–915. doi: 10.1299/jsmec.43.906.
    1. Hernandez Arieta A., Katoh R., Yokoi H., Wenwei Y. Development of a multi-DOF electromyography prosthetic system using the adaptive joint mechanism. Appl. Bionics Biomech. 2006;3:101–111. doi: 10.1155/2006/741851.
    1. Henn S., Carpien C. 3-D Printer Brings Dexterity to Children with No Fingers. National Public Radio; [(accessed on 1 March 2019)]. Available online: .
    1. Ten Kate J., Smit G., Breedveld P. 3D-printed upper limb prostheses: A review. Disabil. Rehabil. Assist. Technol. 2017;12:300–314. doi: 10.1080/17483107.2016.1253117.
    1. Krassenstein E. 229 Newly Designed Prosthetic Hands are 3D Printed by Volunteers for Landmark Event This Sunday. Create Education; [(accessed on 1 March 2019)]. Available online:
    1. Dally C., Johnson D., Canon M., Ritter S., Mehta K. Characteristics of a 3D-printed prosthetic hand for use in developing countries; Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC); Seattle, WA, USA. 9–12 October 2015; pp. 66–70.
    1. Elmansy R. Designing the 3D-Printed prosthetic hand. Des. Manag. Rev. 2015;26:24–31.
    1. Zuniga J., Katsavelis D., Peck J., Stollberg J., Petrykowski M., Carson A., Fernandez C. Cyborg beast: A low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Res. Notes. 2015;8:10. doi: 10.1186/s13104-015-0971-9.
    1. Zuniga J.M., Peck J., Srivastava R., Katsavelis D., Carson A. An open source 3D-printed transitional hand prosthesis for children. JPO J. Prosthet. Orthot. 2016;28:103–108. doi: 10.1097/JPO.0000000000000097.
    1. Zuniga J.M., Carson A.M., Peck J.M., Kalina T., Srivastava R.M., Peck K. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet. Orthot. Int. 2017;41:205–209. doi: 10.1177/0309364616640947.
    1. Schull J. Enabling the future: Crowdsourced 3D-printed prostheticsas a model for open source assistive TechnologyInnovation and mutual aid; Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility; Baltimore, MD, USA. 9–12 October 2015; p. 1.
    1. Jacobs S., Schull J., White P., Lehrer R., Vishwakarma A., Bertucci A. e-nabling education: Curricula and models for teaching students to print hands; Proceedings of the 2016 IEEE Frontiers in Education Conference (FIE); Eire, PA, USA. 12–15 October 2016; pp. 1–4.
    1. Kensing F., Blomberg J. Participatory design: Issues and concerns. Comput. Support. Coop. Work (CSCW) 1998;7:167–185. doi: 10.1023/A:1008689307411.
    1. Druin A. The role of children in the design of new technology. Behav. Inform. Technol. 2002;21:1–25.
    1. Druin A. Cooperative inquiry: Developing new technologies for children with children; Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; Pittsburgh, PA, USA. 15–20 May 1999; pp. 592–599.
    1. Yip J.C., Foss E., Bonsignore E., Guha M.L., Norooz L., Rhodes E., McNally B., Papadatos P., Golub E., Druin A. Children initiating and leading cooperative inquiry sessions; Proceedings of the 12th International Conference on Interaction Design and Children; New York, NY, USA. 24–27 June 2013; pp. 293–296.
    1. Foss E., Guha M.L., Papadatos P., Clegg T., Yip J., Walsh G. Cooperative Inquiry extended: Creating technology with middle school students with learning differences. J. Spec. Educ. Technol. 2013;28:33–46. doi: 10.1177/016264341302800303.
    1. Foss E., Guha M.L., Papadatos P., Clegg T., Yip J., Walsh G. Cooperative Inquiry Design Techniques in a Classroom of Children with Special Learning Needs. University of Maryland; College Park, MD, USA: 2013.
    1. Ottobock 510(k) Premarket Notification. [(accessed on 1 March 2019)]; Available online: .
    1. Smith P.A., Dombrowski M., Buyssens R., Barclay P. The Impact of a Custom Electromyograph (EMG) Controller on Player Enjoyment of Games Designed to Teach the Use of Prosthetic Arms. Comput. Games J. 2018;7:131–147. doi: 10.1007/s40869-018-0060-0.
    1. Manero A., Smith P.A., Sparkman J., Dombrowksi M., Courbin D., Barclay P., Chi A. Design of neuroprosthetics and virtual training: Utilizing additive manufacturing and gamified simulation to improve pediatric outcomes; Proceedings of the MRS Proceedings; Phoenix, AZ, USA. 22–26 April 2019.
    1. Diment L.E., Thompson M.S., Bergmann J.H. Clinical efficacy and effectiveness of 3D printing: A systematic review. BMJ Open. 2017;7:e016891. doi: 10.1136/bmjopen-2017-016891.
    1. Campbell L., Lau A., Pousett B., Janzen E., Raschke S.U. HOW INFILL PERCENTAGE AFFECTS THE ULTIMATE STRENGTH OF A 3D-PRINTED TRANSTIBIAL SOCKET. Can. Prosthet. Orthot. J. 2018;1 doi: 10.33137/cpoj.v1i2.32038.
    1. Song Y., Li Y., Song W., Yee K., Lee K.Y., Tagarielli V. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 2017;123:154–164. doi: 10.1016/j.matdes.2017.03.051.
    1. Dizon J.R.C., Espera A.H., Jr., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018;20:44–67. doi: 10.1016/j.addma.2017.12.002.
    1. Ahn S.H., Montero M., Odell D., Roundy S., Wright P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002;8:248–257. doi: 10.1108/13552540210441166.
    1. Petrick I.J., Simpson T.W. 3D printing disrupts manufacturing: How economies of one create new rules of competition. Res. Technol. Manag. 2013;56:12–16. doi: 10.5437/08956308X5606193.
    1. Diment L.E., Thompson M.S., Bergmann J.H. Three-dimensional printed upper-limb prostheses lack randomised controlled trials: A systematic review. Prosthet. Orthot. Int. 2018;42:7–13. doi: 10.1177/0309364617704803.
    1. Lunsford C., Grindle G., Salatin B., Dicianno B.E. Innovations with 3-dimensional printing in physical medicine and rehabilitation: A review of the literature. PM&R. 2016;8:1201–1212.
    1. Sköld A., Hermansson L.N., Krumlinde-Sundholm L., Eliasson A.C. Development and evidence of validity for the Children’s Hand-use Experience Questionnaire (CHEQ) Dev. Med. Child Neurol. 2011;53:436–442. doi: 10.1111/j.1469-8749.2010.03896.x.
    1. Lindner H.Y., Eliasson A.C., Hermansson L.M. Influence of standardized activities on validity of Assessment of Capacity for Myoelectric Control. J. Rehabil. Res. Dev. 2013;50:1391–1402. doi: 10.1682/JRRD.2012.12.0231.
    1. Lindner H.Y., Linacre J.M., Norling Hermansson L.M. Assessment of capacity for myoelectric control: Evaluation of construct and rating scale. J. Rehabil. Med. 2009;41:467–474. doi: 10.2340/16501977-0361.

Source: PubMed

3
Subscribe