A Multi-Mineral Intervention to Modulate Colonic Mucosal Protein Profile: Results from a 90-Day Trial in Human Subjects

Muhammad N Aslam, Shannon D McClintock, Mohamed Ali H Jawad-Makki, Karsten Knuver, Haris M Ahmad, Venkatesha Basrur, Ingrid L Bergin, Suzanna M Zick, Ananda Sen, D Kim Turgeon, James Varani, Muhammad N Aslam, Shannon D McClintock, Mohamed Ali H Jawad-Makki, Karsten Knuver, Haris M Ahmad, Venkatesha Basrur, Ingrid L Bergin, Suzanna M Zick, Ananda Sen, D Kim Turgeon, James Varani

Abstract

The overall goal of this study was to determine whether Aquamin®, a calcium-, magnesium-, trace element-rich, red algae-derived natural product, would alter the expression of proteins involved in growth-regulation and differentiation in colon. Thirty healthy human subjects (at risk for colorectal cancer) were enrolled in a three-arm, 90-day interventional trial. Aquamin® was compared to calcium alone and placebo. Before and after the interventional period, colonic biopsies were obtained. Biopsies were evaluated by immunohistology for expression of Ki67 (proliferation marker) and for CK20 and p21 (differentiation markers). Tandem mass tag-mass spectrometry-based detection was used to assess levels of multiple proteins. As compared to placebo or calcium, Aquamin® reduced the level of Ki67 expression and slightly increased CK20 expression. Increased p21 expression was observed with both calcium and Aquamin®. In proteomic screen, Aquamin® treatment resulted in many more proteins being upregulated (including pro-apoptotic, cytokeratins, cell-cell adhesion molecules, and components of the basement membrane) or downregulated (proliferation and nucleic acid metabolism) than placebo. Calcium alone also altered the expression of many of the same proteins but not to the same extent as Aquamin®. We conclude that daily Aquamin® ingestion alters protein expression profile in the colon that could be beneficial to colonic health.

Keywords: Aquamin®; biomarkers; calcium; colon cancer chemoprevention; minerals; proteomic analysis; trace elements.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Histological features of the colonic mucosa and proliferation expression. (A): Crypt Length. Values represent means and standard deviations based on measurement of crypt length in individual crypts in each colon biopsy (P:70 and 85, CA:2 and 71, AQ:74 and 96–number of pre and post crypts, respectively) per treatment group (10 subjects per group before and after treatment). (B): Ki67 expression quantitation. Percentage of Ki67-positive nuclei is presented in each group. Values represent means and standard deviations based on evaluation of individual crypts in each colon biopsy (P:106 and 81, CA:63 and 65, AQ:102 and 82–number of pre and post crypts respectively) per treatment group (10 subjects per group before and after 90-day intervention). Each dot represents an individual subject (A,B). (C): Histological appearance and Ki67-stained histological images of the colonic mucosa from a representative subject in each treatment group before and after the 90-day intervention. Scale bar = 100 µm.
Figure 2
Figure 2
Differentiation panel expression. (A): CK20 expression quantitation. CK20 expression is presented by CK20 stain positivity. Values represent means and standard deviations based on evaluation of individual crypts in each colon biopsy (P:106 and 81, CA:63 and 65, AQ:102 and 82–number of pre and post crypts respectively) and luminal surface per treatment group (10 subjects per group before and after treatment for 90 days). (B): p21 expression quantitation. Percentage of strong positive (2+ and 3+) nuclei is used to present p21 expression. Values represent means and standard deviations based on evaluation of individual crypts in each colon biopsy (P:106 and 78, CA:59 and 63, AQ:103 and 65–number of pre and post crypts respectively) and luminal epithelial cells per treatment group (10 subjects per group before and after treatment for 90 days). (C): Correlation of CK20 and p21 expressions in all 30 subjects. r = 0.3819; p (two-tailed) = 0.0373. Each dot represents an individual subject (AC). (D): CK20-stained histological images of colonic mucosa from a representative subject of each treatment group before and after the 90-day intervention. Scale bar = 100 µm. (E): p21-stained histological images of colonic mucosa from a representative subject of each treatment group before and after the 90-day intervention. Scale bar = 50 µm.
Figure 3
Figure 3
Proteomic expression of colon mucosal biopsies and response to interventions. (A): Upregulated and downregulated proteins in each cohort at 1.5-fold. Each bar represents the number of proteins up-regulated (1.5-fold; ≤1% FDR) or down-regulated (0.67-fold; ≤1% FDR) over the 90-day course of treatment with each of the three interventions. On the right, Venn diagrams show the overlap of these upregulated and downregulated moieties to provide common proteins among 3 groups or between 2 groups or unique to an intervention. The list of these upregulated proteins is presented in Table S3. While downregulated proteins are presented in Table S4. (B): Upregulated and downregulated proteins in each cohort at 1.1-fold. Each bar represents the number of proteins up-regulated (1.1-fold; ≤1% FDR) or down-regulated (0.9-fold; ≤1% FDR) over the 90-day course of treatment with each of the three interventions. On the right, Venn diagrams show the overlap of these upregulated and downregulated moieties to provide common proteins among 3 groups or between 2 groups or unique to an intervention. (C): Differential proteomic expression of upregulated proteins (of all interventions at 1.5-fold; ≤1% FDR) is presented in a heatmap. These proteins are listed in Table S3. (D): Differential proteomic expression of downregulated proteins (of all interventions at 1.5-fold; ≤1% FDR) is presented in a heatmap. These proteins are listed in Table S4.
Figure 4
Figure 4
Upregulated proteins of interest. A fold-change value of each protein’s abundance ratio is presented in response to Aquamin® and calcium interventions by comparing these to placebo. This pooled proteomic analysis was based on n = 10 subjects in each cohort.
Figure 5
Figure 5
Downregulated proteins of interest. A fold-change value of each protein’s abundance ratio is presented in response to Aquamin® and calcium interventions by comparing these to placebo. This pooled proteomic analysis was based on n = 10 subjects in each cohort.

References

    1. Heaney R.P. Long-latency deficiency disease: Insights from calcium and vitamin D. Am. J. Clin. Nutr. 2003;78:912–919. doi: 10.1093/ajcn/78.5.912.
    1. Peterlik M., Cross H.S. Vitamin D and calcium insufficiency-related chronic diseases: Molecular and cellular pathophysiology. Eur. J. Clin. Nutr. 2009;63:1377–1386. doi: 10.1038/ejcn.2009.105.
    1. Peterlik M., Cross H.S. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur. J. Clin. Investig. 2005;35:290–304. doi: 10.1111/j.1365-2362.2005.01487.x.
    1. Peterlik M., Boonen S., Cross H.S., Lamberg-Allardt C. Vitamin D and Calcium Insufficiency-Related Chronic Diseases: An Emerging World-Wide Public Health Problem. Int. J. Environ. Res. Public Health. 2009;6:2585–2607. doi: 10.3390/ijerph6102585.
    1. Aslam M., Varani J. The Western-Style Diet, Calcium Deficiency and Chronic Disease. J. Nutr. Food Sci. 2016;6:2.
    1. Keum N., Aune D., Greenwood D.C., Ju W., Giovannucci E.L. Calcium intake and colorectal cancer risk: Dose-response meta-analysis of prospective observational studies. Int. J. Cancer. 2014;135:1940–1948. doi: 10.1002/ijc.28840.
    1. Kesse E., Boutron-Ruault M., Norat T., Riboli E., Clavel-Chapelon F. E3N Group Dietary calcium, phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among French women of the E3N-EPIC prospective study. Int. J. Cancer. 2005;117:137–144. doi: 10.1002/ijc.21148.
    1. Flood A., Peters U., Chatterjee N., Lacey J.V., Schairer C., Schatzkin A. Calcium from diet and supplements is associated with reduced risk of colorectal cancer in a prospective cohort of women. Cancer Epidemiol. Biomark. Prev. 2005;14:126–132.
    1. Shaukat A., Scouras N., Schunemann H.J. Role of Supplemental Calcium in the Recurrence of Colorectal Adenomas: A Metaanalysis of Randomized Controlled Trials. Am. J. Gastroenterol. 2005;100:390–394. doi: 10.1111/j.1572-0241.2005.41220.x.
    1. Larsson S.C., Bergkvist L., Rutegård J., Giovannucci E., Wolk A. Calcium and dairy food intakes are inversely associated with colorectal cancer risk in the Cohort of Swedish Men. Am. J. Clin. Nutr. 2006;83:667–673. doi: 10.1093/ajcn.83.3.667.
    1. Park S.-Y., Murphy S.P., Wilkens L.R., Nomura A.M.Y., Henderson B.E., Kolonel L.N. Calcium and Vitamin D Intake and Risk of Colorectal Cancer: The Multiethnic Cohort Study. Am. J. Epidemiol. 2007;165:784–793. doi: 10.1093/aje/kwk069.
    1. Lennie T.A., Andreae C., Rayens M.K., Song E.K., Dunbar S.B., Pressler S.J., Heo S., Kim J., Moser D.K. Micronutrient Deficiency Independently Predicts Time to Event in Patients With Heart Failure. J. Am. Hear. Assoc. 2018;7:e007251. doi: 10.1161/JAHA.117.007251.
    1. Swaminath S., Um C.Y., Prizment A.E., Lazovich D., Bostick R.M. Combined Mineral Intakes and Risk of Colorectal Cancer in Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. 2019;28:392–399. doi: 10.1158/1055-9965.EPI-18-0412.
    1. Crowley E.K., Long-Smith C.M., Murphy A., Patterson E., Murphy K., O’Gorman D.M., Stanton C., Nolan Y.M. Dietary Supplementation with a Magnesium-Rich Marine Mineral Blend Enhances the Diversity of Gastrointestinal Microbiota. Mar. Drugs. 2018;16:216. doi: 10.3390/md16060216.
    1. Biesalski Hans K., Jana T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018;11:1–11. doi: 10.1016/j.nfs.2018.03.001.
    1. Balk E.M., Adam G.P., Langberg V.N., Earley A., Clark P., Ebeling P.R., Mithal A., Rizzoli R., Zerbini C.A.F., Pierroz D.D., et al. Global dietary calcium intake among adults: A systematic review. Osteoporos. Int. 2017;28:3315–3324. doi: 10.1007/s00198-017-4230-x.
    1. EFSA Panel on Dietetic Products, N. and Allergies. Scientific Opinion on Dietary Reference Values for calcium. EFSA J. 2015;13:4101.
    1. U.S. Department of Health and Human Services. U.S. Department of Agriculture . 2015—2020 Dietary Guidelines for Americans. December 2015. 8th ed. U.S. Department of Health and Human Services; Washington, DC, USA: U.S. Department of Agriculture; Washington, DC, USA: 2015. [(accessed on 21 February 2021)]. Available online:
    1. Dai Q., Zhu X., Manson J.E., Song Y., Li X., Franke A.A., Costello R.B., Rosanoff A., Nian H., Fan L., et al. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018;108:1249–1258. doi: 10.1093/ajcn/nqy274.
    1. Aslam M.N., Bhagavathula N., Paruchuri T., Hu X., Chakrabarty S., Varani J. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells. Cancer Lett. 2009;283:186–192. doi: 10.1016/j.canlet.2009.03.037.
    1. Singh N., Aslam M.N., Varani J., Chakrabarty S. Induction of calcium sensing receptor in human colon cancer cells by calcium, vitamin D and aquamin: Promotion of a more differentiated, less malignant and indolent phenotype. Mol. Carcinog. 2013;54:543–553. doi: 10.1002/mc.22123.
    1. McClintock S.D., Colacino J.A., Attili D., Dame M.K., Richter A., Reddy A.R., Basrur V., Rizvi A.H., Turgeon D.K., Varani J., et al. Calcium-Induced Differentiation of Human Colon Adenomas in Colonoid Culture: Calcium Alone versus Calcium with Additional Trace Elements. Cancer Prev. Res. 2018;11:413–428. doi: 10.1158/1940-6207.CAPR-17-0308.
    1. Attili D., McClintock S.D., Rizvi A.H., Pandya S., Rehman H., Nadeem D.M., Richter A., Thomas D., Dame M.K., Turgeon D.K., et al. Calcium-induced differentiation in normal human colonoid cultures: Cell-cell/cell-matrix adhesion, barrier formation and tissue integrity. PLoS ONE. 2019;14:e0215122. doi: 10.1371/journal.pone.0215122.
    1. Aslam M.N., McClintock S.D., Attili D., Pandya S., Rehman H., Nadeem D.M., Jawad-Makki M.A.H., Rizvi A.H., Berner M.M., Dame M.K., et al. Ulcerative Colitis-Derived Colonoid Culture: A Multi-Mineral-Approach to Improve Barrier Protein Expression. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.577221.
    1. McClintock S.D., Attili D., Dame M.K., Richter A., Silvestri S.S., Berner M.M., Bohm M.S., Karpoff K., McCarthy C.L., Spence J.R., et al. Differentiation of human colon tissue in culture: Effects of calcium on trans-epithelial electrical resistance and tissue cohesive properties. PLoS ONE. 2020;15:e0222058. doi: 10.1371/journal.pone.0222058.
    1. Aslam M.N., Paruchuri T., Bhagavathula N., Varani J. A Mineral-Rich Red Algae Extract Inhibits Polyp Formation and Inflammation in the Gastrointestinal Tract of Mice on a High-Fat Diet. Integr. Cancer Ther. 2010;9:93–99. doi: 10.1177/1534735409360360.
    1. Aslam M.N., Bergin I., Naik M., Paruchuri T., Hampton A., Rehman M., Dame M.K., Rush H., Varani J. A Multimineral Natural Product from Red Marine Algae Reduces Colon Polyp Formation in C57BL/6 Mice. Nutr. Cancer. 2012;64:1020–1028. doi: 10.1080/01635581.2012.713160.
    1. Newmark H.L., Yang K., Kurihara N., Fan K., Augenlicht L.H., Lipkin M. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: A preclinical model for human sporadic colon cancer. Carcinogenesis. 2008;30:88–92. doi: 10.1093/carcin/bgn229.
    1. Mariadason J.M., Bordonaro M., Aslam F., Shi L., Kuraguchi M., Velcich A., Augenlicht L.H. Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Res. 2001;61:3465–3471.
    1. Grau M.V., Baron J.A., Sandler R.S., Haile R.W., Beach M.L., Church T.R., Heber D. Vitamin D, Calcium Supplementation, and Colorectal Adenomas: Results of a Randomized Trial. J. Natl. Cancer Inst. 2003;95:1765–1771. doi: 10.1093/jnci/djg110.
    1. Baron J., Beach M., Mandel J., Van Stolk R., Haile R., Sandler R., Rothstein R., Summers R., Snover D., Beck G., et al. Calcium Supplements for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 1999;340:101–107. doi: 10.1056/NEJM199901143400204.
    1. Pommergaard H.-C., Burcharth J., Rosenberg J., Raskov H. Aspirin, Calcitriol, and Calcium Do Not Prevent Adenoma Recurrence in a Randomized Controlled Trial. Gastroenterology. 2016;150:114–122. doi: 10.1053/j.gastro.2015.09.010.
    1. Baron J.A., Barry E.L., Mott L.A., Rees J.R., Sandler R.S., Snover D.C., Bostick R.M., Ivanova A., Cole B.F., Ahnen D.J., et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 2015;373:1519–1530. doi: 10.1056/NEJMoa1500409.
    1. Nimptsch K., Lee D.H., Zhang X., Song M., Farvid M.S., Rezende L.F.M., Cao Y., Chan A.T., Fuchs C., Meyerhardt J., et al. Dairy intake during adolescence and risk of colorectal adenoma later in life. Br. J. Cancer. 2021:1–9. doi: 10.1038/s41416-020-01203-x.
    1. Aslam M.N., Bassis C.M., Bergin I.L., Knuver K., Zick S.M., Sen A., Turgeon D.K., Varani J. A Calcium-Rich Multimineral Intervention to Modulate Colonic Microbial Communities and Metabolomic Profiles in Humans: Results from a 90-Day Trial. Cancer Prev. Res. 2020;13:101–116. doi: 10.1158/1940-6207.CAPR-19-0325.
    1. Bostick R.M. Effects of supplemental vitamin D and calcium on normal colon tissue and circulating biomarkers of risk for colorectal neoplasms. J. Steroid Biochem. Mol. Biol. 2015;148:86–95. doi: 10.1016/j.jsbmb.2015.01.010.
    1. Fedirko V., Bostick R.M., Flanders W.D., Long Q., Sidelnikov E., Shaukat A., Daniel C.R., Rutherford R.E., Woodard J.J. Effects of vitamin d and calcium on proliferation and differentiation in normal colon mucosa: A randomized clinical trial. Cancer Epidemiol. Biomark. Prev. 2009;18:2933–2941. doi: 10.1158/1055-9965.EPI-09-0239.
    1. Shen H., Ahearn T.U., Bostick R.M. Effects of calcium and vitamin D supplementation on crypt morphology in normal colon mucosa: A randomized clinical trial. Mol. Carcinog. 2013;54:242–247. doi: 10.1002/mc.22090.
    1. Adey W.H., McKibbin D.L. Studies on the Maerl Species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium coralloides Crouan in the Ria de Vigo. Bot. Mar. 1970;13:100–106. doi: 10.1515/botm.1970.13.2.100.
    1. Frestedt J.L., Walsh M., Kuskowski M.A., Zenk J.L. A natural mineral supplement provides relief from knee osteoarthritis symptoms: A randomized controlled pilot trial. Nutr. J. 2008;7:1–8. doi: 10.1186/1475-2891-7-9.
    1. Frestedt J.L., Kuskowski M.A., Zenk J.L. A natural seaweed derived mineral supplement (Aquamin F) for knee osteoarthritis: A randomized, placebo controlled pilot study. Nutr. J. 2009;8:1–8. doi: 10.1186/1475-2891-8-7.
    1. Slevin M.M., Allsopp P.J., Magee P.J., Bonham M.P., Naughton V.R., Strain J.J., Duffy M.E., Wallace J.M., Mc Sorley E.M. Supplementation with Calcium and Short-Chain Fructo-Oligosaccharides Affects Markers of Bone Turnover but Not Bone Mineral Density in Postmenopausal Women. J. Nutr. 2013;144:297–304. doi: 10.3945/jn.113.188144.
    1. McAlister G.C., Nusinow D.P., Jedrychowski M.P., Wühr M., Huttlin E.L., Erickson B.K., Rad R., Haas W., Gygi S.P. MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes. Anal. Chem. 2014;86:7150–7158. doi: 10.1021/ac502040v.
    1. Yurchenco P.D., Patton B.L. Developmental and pathogenic mechanisms of basement membrane assembly. Curr. Pharm. Des. 2009;15:1277–1294. doi: 10.2174/138161209787846766.
    1. Kadler K.E., Baldock C., Bella J., Boot-Handford R.P. Collagens at a glance. J. Cell Sci. 2007;120:1955–1958. doi: 10.1242/jcs.03453.
    1. Chu I.M., Hengst L., Slingerland J.M. The Cdk inhibitor p27 in human cancer: Prognostic potential and relevance to anticancer therapy. Nat. Rev. Cancer. 2008;8:253–267. doi: 10.1038/nrc2347.
    1. Zhang J., Sun Z., Han Y., Yao R., Yue L., Xu Y., Zhang J. Rnf2 knockdown reduces cell viability and promotes cell cycle arrest in gastric cancer cells. Oncol. Lett. 2017;13:3817–3822. doi: 10.3892/ol.2017.5868.
    1. Zhou G., Yang W., Yu L., Yu T., Liu Z. CD99 refers to the activity of inflammatory bowel disease. Scand. J. Gastroenterol. 2016;52:359–364. doi: 10.1080/00365521.2016.1256426.
    1. Huijbers E.J.M., Van Der Werf I.M., Faber L.D., Sialino L.D., Van Der Laan P., Holland H.A., Cimpean A.M., Thijssen V.L.J.L., Van Beijnum J.R., Griffioen A.W. Targeting Tumor Vascular CD99 Inhibits Tumor Growth. Front. Immunol. 2019;10:651. doi: 10.3389/fimmu.2019.00651.
    1. Inamoto S., Itatani Y., Yamamoto T., Minamiguchi S., Hirai H., Iwamoto M., Hasegawa S., Taketo M.M., Sakai Y., Kawada K. Loss of SMAD4 Promotes Colorectal Cancer Progression by Accumulation of Myeloid-Derived Suppressor Cells through the CCL15-CCR1 Chemokine Axis. Clin. Cancer Res. 2016;22:492–501. doi: 10.1158/1078-0432.CCR-15-0726.
    1. Zhu H., Chen L., Zhou W., Huang Z., Hu J., Dai S., Wang X., Huang X., He C. Over-expression of the ATP5J gene correlates with cell migration and 5-fluorouracil sensitivity in colorectal cancer. PLoS ONE. 2013;8:e76846. doi: 10.1371/journal.pone.0076846.
    1. Jamal B., Sengupta P.K., Gao Z.-N., Nita-Lazar M., Amin B., Jalisi S., Bouchie M.P., Kukuruzinska M.A. Aberrant amplification of the crosstalk between canonical Wnt signaling and N-glycosylation gene DPAGT1 promotes oral cancer. Oral Oncol. 2012;48:523–529. doi: 10.1016/j.oraloncology.2012.01.010.
    1. Wang B., Pelletier J., Massaad M.J., Herscovics A., Shore G.C. The Yeast Split-Ubiquitin Membrane Protein Two-Hybrid Screen Identifies BAP31 as a Regulator of the Turnover of Endoplasmic Reticulum-Associated Protein Tyrosine Phosphatase-Like, B. Mol. Cell. Biol. 2004;24:2767–2778. doi: 10.1128/MCB.24.7.2767-2778.2004.
    1. Pantaleo M.A., Astolfi A., Nannini M., Paterini P., Piazzi G., Ercolani G., Brandi G., Martinelli G., Pession A., Pinna A.D., et al. Gene expression profiling of liver metastases from colorectal cancer as potential basis for treatment choice. Br. J. Cancer. 2008;99:1729–1734. doi: 10.1038/sj.bjc.6604681.
    1. Pedrazza L., Schneider T., Bartrons R., Ventura F., Rosa J.L. The ubiquitin ligase HERC1 regulates cell migration via RAF-dependent regulation of MKK3/p38 signaling. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-57756-7.
    1. Tian B.X., Sun W., Wang S.H., Liu P.J., Wang Y.C. Differential expression and clinical significance of COX6C in human diseases. Am. J. Transl. Res. 2021;13:1–10.
    1. Tian M., Wang X., Sun J., Lin W., Chen L., Liu S., Wu X., Shi L., Xu P., Cai X., et al. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of β-catenin. Nat. Commun. 2020;11:5762. doi: 10.1038/s41467-020-19627-7.
    1. Aslam M.N., Bergin I., Naik M., Hampton A., Allen R., Kunkel S.L., Rush H., Varani J. A Multi-Mineral Natural Product Inhibits Liver Tumor Formation in C57BL/6 Mice. Biol. Trace Elem. Res. 2012;147:267–274. doi: 10.1007/s12011-011-9316-2.
    1. Aslam M.N., Bergin I., Jepsen K.J., Kreider J.M., Graf K.H., Naik M., Goldstein S.A., Varani J. Preservation of Bone Structure and Function by Lithothamnion sp. Derived Minerals. Biol. Trace Elem. Res. 2013;156:210–220. doi: 10.1007/s12011-013-9820-7.
    1. Aslam M.N., Kreider J.M., Paruchuri T., Bhagavathula N., DaSilva M., Zernicke R.F., Goldstein S.A., Varani J. A Mineral-Rich Extract from the Red Marine Algae Lithothamnion calcareum Preserves Bone Structure and Function in Female Mice on a Western-Style Diet. Calcif. Tissue Int. 2010;86:313–324. doi: 10.1007/s00223-010-9340-9.
    1. Aslam M.N., Jepsen K.J., Khoury B., Graf K.H., Varani J. Bone structure and function in male C57BL/6 mice: Effects of a high-fat Western-style diet with or without trace minerals. Bone Rep. 2016;5:141–149. doi: 10.1016/j.bonr.2016.05.002.
    1. Hampton A.L., Aslam M.N., Naik M.K., Bergin I.L., Allen R.M.A., Craig R., Kunkel S.L., Veerapaneni I., Paruchuri T.A., Patterson K., et al. Ulcerative Dermatitis in C57BL/6NCrl Mice on a Low-Fat or High-Fat Diet With or Without a Mineralized Red-Algae Supplement. J. Am. Assoc. Lab. Anim. Sci. 2015;54:487–496.
    1. Huh J.W., Lee J.H., Kim H.R. Expression of p16, p53, and Ki-67 in colorectal adenocarcinoma: A study of 356 surgically resected cases. Hepatogastroenterology. 2010;57:734–740.
    1. Luo Z.W., Zhu M.G., Zhang Z.Q., Ye F.J., Huang W.H., Luo X.Z. Increased expression of Ki-67 is a poor prognostic marker for colorectal cancer patients: A me-ta-analysis. BMC Cancer. 2019;19:123. doi: 10.1186/s12885-019-5324-y.
    1. Varani J., McClintock S.D., Aslam M.N. Organoid culture to study epithelial cell differentiation and barrier formation in the colon: Bridging the gap between monolayer cell culture and human subject research. In Vitr. Cell. Dev. Biol. Anim. 2021;57:174–190. doi: 10.1007/s11626-020-00534-6.
    1. Aggarwal A., Prinz-Wohlgenannt M., Tennakoon S., Höbaus J., Boudot C., Mentaverri R., Brown E.M., Baumgartner-Parzer S., Kállay E. The calcium-sensing receptor: A promising target for prevention of colorectal cancer. Biochim. Biophys. Acta Bioenerg. 2015;1853:2158–2167. doi: 10.1016/j.bbamcr.2015.02.011.
    1. Iamartino L., Elajnaf T., Gall K., David J., Manhardt T., Heffeter P., Grusch M., Derdak S., Baumgartner-Parzer S., Schepelmann M., et al. Effects of pharmacological calcimimetics on colorectal cancer cells over-expressing the human calcium-sensing receptor. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867:118836. doi: 10.1016/j.bbamcr.2020.118836.
    1. Brennan S.C., Thiem U., Roth S., Aggarwal A., Fetahu I.S., Tennakoon S., Gomes A.R., Brandi M.L., Bruggeman F., Mentaverri R., et al. Calcium sensing receptor signalling in physiology and cancer. Biochim. Biophys. Acta Bioenerg. 2013;1833:1732–1744. doi: 10.1016/j.bbamcr.2012.12.011.
    1. Huang Y., Zhou Y., Castiblanco A., Yang W., Brown E.M., Yang J.J. Multiple Ca2+-Binding Sites in the Extracellular Domain of the Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+Response†. Biochemistry. 2008;48:388–398. doi: 10.1021/bi8014604.
    1. Carrillo-Lopez N., Fernandez-Martin J.L., Alvarez-Hernandez D., Gonzalez-Suarez I., Castro-Santos P., Roman-Garcia P., Lopez-Novoa J.M., Cannata-Andía J.B. Lanthanum activates calcium-sensing receptor and enhances sensitivity to calcium. Nephrol. Dial. Transpl. 2010;25:2930–2937. doi: 10.1093/ndt/gfq124.
    1. Attili D., Jenkins B., Aslam M.N., Dame M.K., Varani J. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation. Biol. Trace Elem. Res. 2012;150:467–476. doi: 10.1007/s12011-012-9503-9.
    1. Davis C.D., Feng Y. Dietary Copper, Manganese and Iron Affect the Formation of Aberrant Crypts in Colon of Rats Administered 3,2′-Dimethyl-4-Aminobiphenyl. J. Nutr. 1999;129:1060–1067. doi: 10.1093/jn/129.5.1060.
    1. Alwahaibi N., Mohamed J., Alhamadani A. Supplementation of selenium reduces chemical hepatocarcinogenesis in male Sprague-Dawley rats. J. Trace Elem. Med. Biol. 2010;24:119–123. doi: 10.1016/j.jtemb.2009.09.003.
    1. Salim S.Y., Soderholm J.D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel. Dis. 2011;17:362–381. doi: 10.1002/ibd.21403.
    1. Vancamelbeke M., Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017;11:821–834. doi: 10.1080/17474124.2017.1343143.
    1. Dunlop S.P., Hebden J., Campbell E., Naesdal J., Olbe L., Perkins A.C., Spiller R.C. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am. J. Gastroenterol. 2006;101:1288–1294. doi: 10.1111/j.1572-0241.2006.00672.x.
    1. De Arcangelis A., Hamade H., Alpy F., Normand S., Bruyère E., Lefebvre O., Méchine-Neuville A., Siebert S., Pfister V., Lepage P., et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut. 2017;66:1748–1760. doi: 10.1136/gutjnl-2015-310847.

Source: PubMed

3
Subscribe