Vitamin A cycle byproducts impede dark adaptation

Dan Zhang, Kiera Robinson, Leonide Saad, Ilyas Washington, Dan Zhang, Kiera Robinson, Leonide Saad, Ilyas Washington

Abstract

Impaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle. We show that later in life, in the human eye, these byproducts reach levels commensurate with those of vitamin A. In mice, selectively inhibiting the formation of these byproducts, with the investigational drug C20D3-vitamin A, results in faster DA. In contrast, acutely increasing these ocular byproducts through exogenous delivery leads to slower DA, with otherwise preserved retinal function and morphology. Our findings reveal that vitamin A cycle byproducts alone are sufficient to cause delays in DA and suggest that they may contribute to universal age-related DA impairment. Our data further indicate that the age-related decline in DA may be tractable to pharmacological intervention by C20D3-vitamin A.

Keywords: A2E AMD; C20D3-vitamin A; dark adaptation; retinal degeneration; vitamin A dimers.

Conflict of interest statement

Conflict of interest I. W. is an inventor on patents disclosing methods to prevent retinal degeneration. All other authors declare that they have no conflicts of interest with the contents of this article.

Copyright © 2021. Published by Elsevier Inc.

Figures

Figure 1
Figure 1
Vitamin A cycle byproducts form with age; administration of C20D3-vitamin A retards byproduct formation.A, representative UPLC fluorescence signatures of extracts from human retina (neuroretina, RPE, and choroid). Excitation = 488 nm; emission = 650 nm. Each peak corresponds to a different VAB. 80s, n = 3 pooled eyes, 30s, n = 2 pooled eyes. B, vitamin A (retinyl palmitate, retinyl stearate, 11-cis-retinyl palmitate, and the cis, trans isomers of retinaldehyde and retinol) and qVAB (A2E, iso-A2E, and oxo-A2E) in the human retina. About 25 eyes from 25 donors (n = 25) were used in total. C, average amounts, with SEM, of vitamin A in 32- to 87-year-old, human retina (n = 25 eyes). Retinyl esters (mean ± SD): 22,404 ± 11,147 pmols per eye. Retinol: 2159 ± 1895 pmols per eye. Retinaldehyde: 1650 ± 1748 pmols per eye. D, representative UPLC traces of eye extracts from 9-month-old Abca4−/−/Rdh8−/− mice administered a standard rodent diet containing vitamin A as retinyl acetate (blue curve) or C20D3-retinyl acetate (red curve) from weaning. E, vitamin A and qVAB in the eyes of Abca4−/−/Rdh8−/− mice described in panel D. Each point represents between five and 10 pooled eyes. For the retinyl acetate cohort, 125 eyes were used (n = 125); for the C20D3-retinyl acetate cohort, n = 115. qVAB increased at a rate (with 95% confidence interval) of 13 (11–15) pmol per eye per month in the retinyl acetate cohort and 2 (0.7–4) pmol per eye per month for the C20D3-retinyl acetate cohort; an 83% decrease in the rate of qVAB accumulation, p < 0.0001, two-sided F test. F, average amounts (with SEM) of vitamin A in the eyes of the Abca4−/−/Rdh8−/− mice described in panels D and E, from 3 to 10 months of age. A2E, N-retinylidene-N-retinylethanolamine; qVAB, quantifiable VAB; RFU, relative fluorescence unit; RPE, retinal pigment epithelium; UPLC, ultraperformance liquid chromatography; VAB, vitamin A byproduct.
Figure 2
Figure 2
Vitamin A cycle byproducts, delay dark adaptation.A, average (SEM) ERG b-wave recoveries following light exposure, for ∼5-month-old, Abca4−/−/Rdh8−/− mice administered a diet containing retinyl acetate (n = 16 eyes, blue curve, recovered a mean and SEM of 300 ± 30 μV after 30 min, when fitted to an exponential curve) or C20D3-retinyl acetate (n = 24 eyes, red curve, recovered 561 ± 29 μV, after 30 min; a 87% increase, p = 0.0001, two-sided F test). B, average (SEM) amounts of ocular vitamin A and qVAB following a single intraocular injection of VAB (VAB-treated, n = 3) or sham (VAB-naive, n = 3) into wildtype mice. C, average with SEM, ERG b-wave recoveries following light exposure in VAB-naive (n = 13 eyes, dashed curve, recovered 600 ± 39 [SEM] μV) and VAB-treated wildtype mice (n = 18 eyes, solid curve, recovered 355 ± 9 μV, p = 0.003, two-sided F test). D and E, rhodopsin recoveries in mice described in panels A through C fitted to an exponential curve. D, retinyl acetate cohort, n = 10 eyes, rate constant with SEM = 0.020 ± 0.009 min−1. C20D3-retinyl acetate cohort, n = 10 eyes, rate constant with SEM = 0.029 ± 0.015 min−1, p = 0.048, two-sided F test. E, VAB-naive, n = 30 eyes, rate constant with SEM = 0.044 ± 0.018 min−1. VAB-treated, n = 28 eyes, rate constant with SEM = 0.027 ± 0.024 min−1, p = 0.0001, two-sided F test. ERG, electroretinography; qVAB, quantifiable VAB; VAB, vitamin A byproduct.
Figure 3
Figure 3
Visual cycle byproducts delay dark adaptation, despite otherwise normal retina normal electrophysiological function.A, amounts with SEM of retinyl esters (retinyl palmitate, retinyl stearate, and 11-cis-retinyl palmitate), retinol (cis and trans isomers), and retinaldehyde (cis and trans isomers), in Abca4−/−/Rdh8−/− mice administered, from weaning, a standard rodent diet containing retinyl acetate (n = 167, blue curve) or C20D3-retinyl acetate (n = 167, red curve). All slopes did not significantly deviate from zero, as determined by p values >0.5 from F tests. B, average with SEM of ERG a-wave recoveries following light exposure, in ≈5-month-old, Abca4−/−/Rdh8−/− mice administered a diet containing retinyl acetate (n = 28 eyes, blue curve, recovering a mean and SEM of 104 ± 5 μV) or C20D3-retinyl acetate (n = 16 eyes, red curve, recovering 153 ± 14 μV, p = 0.0299, two-sided F test). CF, ERG dose response curves (average with SEM) for the cohorts of dark-adapted Abca4−/−/Rdh8−/− mice described in panel B at 5 months (C and D, retinyl acetate, n = 15 eyes; C20D3-retinyl acetate, n = 23 eyes) and 9 months of age (E and F, retinyl acetate, n = 18 eyes; C20D3-retinyl acetate, n = 25 eyes). ERG, electroretinography.

References

    1. Moe-Nilssen R., Helbostad J.L., Akra T., Birdedal L., Nygaard H.A. Modulation of gait during visual adaptation to dark. J. Mot. Behav. 2006;38:118–125.
    1. McMurdo M.E., Gaskell A. Dark adaptation and falls in the elderly. Gerontology. 1991;37:221–224.
    1. Munch I.C., Altuntas C., Li X.Q., Jackson G.R., Klefter O.N., Larsen M. Dark adaptation in relation to choroidal thickness in healthy young subjects: A cross-sectional, observational study. BMC Ophthalmol. 2016;16:105.
    1. Kosnik W., Winslow L., Kline D., Rasinski K., Sekuler R. Visual changes in daily life throughout adulthood. J. Gerontol. 1988;43:P63–70.
    1. Lains I., Miller J.B., Park D.H., Tsikata E., Davoudi S., Rahmani S., Pierce J., Silva R., Chen T.C., Kim I.K., Vavvas D., Miller J.W., Husain D. Structural changes associated with delayed dark adaptation in age-related macular degeneration. Ophthalmology. 2017;124:1340–1352.
    1. Lains I., Park D.H., Mukai R., Silverman R., Oellers P., Mach S., Kim I.K., Vavvas D.G., Miller J.W., Miller J.B., Husain D. Peripheral changes associated with delayed dark adaptation in age-related macular degeneration. Am. J. Ophthalmol. 2018;190:113–124.
    1. Sakai N., Decatur J., Nakanishi K., Eldred G.E. Ocular age pigment ''A2-E'': An unprecedented pyridinium bisretinoid. J. Am. Chem. Soc. 1996;118:1559–1560.
    1. Fishkin N.E., Sparrow J.R., Allikmets R., Nakanishi K. Isolation and characterization of a retinal pigment epithelial cell fluorophore: An all-trans-retinal dimer conjugate. Proc. Natl. Acad. Sci. U. S. A. 2005;102:7091–7096.
    1. Katz M.L., Gao C.L., Rice L.M. Formation of lipofuscin-like fluorophores by reaction of retinal with photoreceptor outer segments and liposomes. Mech. Ageing Dev. 1996;92:159–174.
    1. Eldred G.E., Lasky M.R. Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature. 1993;361:724–726.
    1. Murdaugh L.S., Wang Z., Del Priore L.V., Dillon J., Gaillard E.R. Age-related accumulation of 3-nitrotyrosine and nitro-A2E in human Bruch's membrane. Exp. Eye Res. 2010;90:564–571.
    1. Murdaugh L.S., Mandal S., Dill A.E., Dillon J., Simon J.D., Gaillard E.R. Compositional studies of human RPE lipofuscin: Mechanisms of molecular modifications. J. Mass Spectrom. 2011;46:90–95.
    1. Ueda K., Zhao J., Kim H.J., Sparrow J.R. Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Proc. Natl. Acad. Sci. U. S. A. 2016;113:6904–6909.
    1. Ben-Shabat S., Itagaki Y., Jockusch S., Sparrow J.R., Turro N.J., Nakanishi K. Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew. Chem. Int. Ed. Engl. 2002;41:814–817.
    1. Washington I., Jockusch S., Itagaki Y., Turro N.J., Nakanishi K. Superoxidation of bisretinoids. Angew. Chem. Int. Ed. Engl. 2005;44:7097–7100.
    1. Wang Z., Keller L.M., Dillon J., Gaillard E.R. Oxidation of A2E results in the formation of highly reactive aldehydes and ketones. Photochem. Photobiol. 2006;82:1251–1257.
    1. Gliem M., Muller P.L., Finger R.P., McGuinness M.B., Holz F.G., Charbel Issa P. Quantitative fundus autofluorescence in early and intermediate age-related macular degeneration. JAMA Ophthalmol. 2016;134:817–824.
    1. Hecht S., Mandelbaum J. Dark adaptation and experimental human vitamin A deficiency. Am. J. Physiol. 1940;130:651–664.
    1. Maeda A., Maeda T., Golczak M., Palczewski K. Retinopathy in mice induced by disrupted all-trans-retinal clearance. J. Biol. Chem. 2008;283:26684–26693.
    1. Kaufman Y., Ma L., Washington I. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J. Biol. Chem. 2011;286:7958–7965.
    1. Charbel Issa P., Barnard A.R., Herrmann P., Washington I., MacLaren R.E. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc. Natl. Acad. Sci. U. S. A. 2015;112:8415–8420.
    1. Ma L., Kaufman Y., Zhang J., Washington I. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J. Biol. Chem. 2011;286:7966–7974.
    1. Karpe G., Tansley K. The relationship between the change in the electroretinogram and the subjective dark-adaptation curve. J. Physiol. 1948;107:272–279.
    1. Jackson G.R., Owsley C., McGwin G., Jr. Aging and dark adaptation. Vis. Res. 1999;39:3975–3982.
    1. Gaffney A.J., Binns A.M., Margrain T.H. Aging and cone dark adaptation. Optom. Vis. Sci. 2012;89(8):1219–1224.
    1. Dugel P.U., Novack R.L., Csaky K.G., Richmond P.P., Birch D.G., Kubota R. Phase II, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration. Retina. 2015;35:1173–1183.
    1. Leibrock C.S., Reuter T., Lamb T.D. Molecular basis of dark adaptation in rod photoreceptors. Eye (Lond) 1998;12(Pt 3b):511–520.
    1. Arvanitakis L., Geras-Raaka E., Gershengorn M.C. Constitutively signaling G-protein-coupled receptors and human disease. Trends Endocrinol. Metab. 1998;9:27–31.
    1. Lem J., Fain G.L. Constitutive opsin signaling: Night blindness or retinal degeneration? Trends Mol. Med. 2004;10:150–157.
    1. Park P.S. Constitutively active rhodopsin and retinal disease. Adv. Pharmacol. 2014;70:1–36.
    1. Linsenmeier R.A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J. Gen. Physiol. 1986;88:521–542.
    1. Stefansson E. Retinal oxygen tension is higher in light than dark. Pediatr. Res. 1988;23:5–8.
    1. Barja G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: Implications for aging studies. Rejuvenation Res. 2007;10:215–224.
    1. Benedetto M.M., Contin M.A. Oxidative stress in retinal degeneration promoted by constant LED light. Front. Cell Neurosci. 2019;13:139.
    1. Salin K., Auer S.K., Rudolf A.M., Anderson G.J., Cairns A.G., Mullen W., Hartley R.C., Selman C., Metcalfe N.B. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo. Biol. Lett. 2015;11:20150538.
    1. Sung H.J., Ma W., Wang P.Y., Hynes J., O’Riordan T.C., Combs C.A., McCoy J.P., Jr., Bunz F., Kang J.G. Mitochondrial respiration protects against oxygen-associated DNA damage. Nat. Commun. 2010;1:5.
    1. McCaffery P., Mey J., Drager U.C. Light-mediated retinoic acid production. Proc. Natl. Acad. Sci. U. S. A. 1996;93:12570–12574.
    1. Chang B., Hawes N.L., Pardue M.T., German A.M., Hurd R.E., Davisson M.T., Nusinowitz S., Rengarajan K., Boyd A.P., Sidney S.S., Phillips M.J., Stewart R.E., Chaudhury R., Nickerson J.M., Heckenlively J.R. Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vis. Res. 2007;47:624–633.
    1. Dong E., Bachleda A., Xiong Y., Osawa S., Weiss E.R. Reduced phosphoCREB in Muller glia during retinal degeneration in rd10 mice. Mol. Vis. 2017;23:90–102.
    1. Dowling J.E., Sidman R.L. Inherited retinal dystrophy in the rat. J. Cell Biol. 1962;14:73–109.
    1. Mullins R.F., McGwin G., Jr., Searcey K., Clark M.E., Kennedy E.L., Curcio C.A., Stone E.M., Owsley C. The ARMS2 A69S polymorphism is associated with delayed rod-mediated dark adaptation in eyes at risk for incident age-related macular degeneration. Ophthalmology. 2019;126:591–600.
    1. Owsley C., McGwin G., Jr., Clark M.E., Jackson G.R., Callahan M.A., Kline L.B., Witherspoon C.D., Curcio C.A. Delayed rod-mediated dark adaptation is a functional biomarker for incident early age-related macular degeneration. Ophthalmology. 2016;123:344–351.
    1. Moiseyev G., Nikolaeva O., Chen Y., Farjo K., Takahash Y., Ma J.X. Inhibition of the visual cycle by A2E through direct interaction with RPE65 and implications in Stargardt disease. Proc. Natl. Acad. Sci. U. S. A. 2010;107:17551–17556.
    1. Iriyama A., Fujiki R., Inoue Y., Takahashi H., Tamaki Y., Takezawa S., Takeyama K., Jang W.D., Kato S., Yanagi Y. A2E, a pigment of the lipofuscin of retinal pigment epithelial cells, is an endogenous ligand for retinoic acid receptor. J. Biol. Chem. 2008;283:11947–11953.
    1. Noorwez S.M., Ostrov D.A., McDowell J.H., Krebs M.P., Kaushal S. A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin. Invest. Ophthalmol. Vis. Sci. 2008;49:3224–3230.
    1. Fishman G.A., Farbman J.S., Alexander K.R. Delayed rod dark adaptation in patients with Stargardt's disease. Ophthalmology. 1991;98:957–962.
    1. Itabashi R., Katsumi O., Mehta M.C., Wajima R., Tamai M., Hirose T. Stargardt’s disease/fundus flavimaculatus: Psychophysical and electrophysiologic results. Graefes Arch. Clin. Exp. Ophthalmol. 1993;231:555–562.
    1. Owsley C., McGwin G., Jr. Vision-targeted health related quality of life in older adults: Patient-reported visibility problems in low luminance activities are more likely to decline than daytime activities. BMC Ophthalmol. 2016;16:92.
    1. Jackson G.R., Clark M.E., Scott I.U., Walter L.E., Quillen D.A., Brigell M.G. Twelve-month natural history of dark adaptation in patients with AMD. Optom. Vis. Sci. 2014;91(8):925–931.
    1. Chiu K., Chang R.C., So K.F. Intravitreous injection for establishing ocular diseases model. J. Vis. Exp. 2007;8:313.
    1. Penn J., Mihai D.M., Washington I. Morphological and physiological retinal degeneration induced by intravenous delivery of vitamin A dimers in rabbits. Dis. Model Mech. 2015;8:131–138.
    1. Washington I., Zhou J., Jockusch S., Turro N.J., Nakanishi K., Sparrow J.R. Chlorophyll derivatives as visual pigments for super vision in the red. Photochem. Photobiol. Sci. 2007;6:775–779.

Source: PubMed

3
Subscribe