Effects of home-based resistance training and neuromuscular electrical stimulation in knee osteoarthritis: a randomized controlled trial

Robert A Bruce-Brand, Raymond J Walls, Joshua C Ong, Barry S Emerson, John M O'Byrne, Niall M Moyna, Robert A Bruce-Brand, Raymond J Walls, Joshua C Ong, Barry S Emerson, John M O'Byrne, Niall M Moyna

Abstract

Background: Quadriceps femoris muscle (QFM) weakness is a feature of knee osteoarthritis (OA) and exercise programs that strengthen this muscle group can improve function, disability and pain. Traditional supervised resistance exercise is however resource intensive and dependent on good adherence which can be challenging to achieve in patients with significant knee OA. Because of the limitations of traditional exercise programs, interest has been shown in the use of neuromuscular electrical stimulation (NMES) to strengthen the QFM. We conducted a single-blind, prospective randomized controlled study to compare the effects of home-based resistance training (RT) and NMES on patients with moderate to severe knee OA.

Methods: 41 patients aged 55 to 75 years were randomised to 6 week programs of RT, NMES or a control group receiving standard care. The primary outcome was functional capacity measured using a walk test, stair climb test and chair rise test. Additional outcomes were self-reported disability, quadriceps strength and cross-sectional area. Outcomes were assessed pre- and post-intervention and at 6 weeks post-intervention (weeks 1, 8 and 14 respectively).

Results: There were similar, significant improvements in functional capacity for the RT and NMES groups at week 8 compared to week 1 (p ≤ 0.001) and compared to the control group (p < 0.005), and the improvements were maintained at week 14 (p ≤ 0.001). Cross sectional area of the QFM increased in both training groups (NMES: +5.4%; RT: +4.3%; p = 0.404). Adherence was 91% and 83% in the NMES and RT groups respectively (p = 0.324).

Conclusions: Home-based NMES is an acceptable alternative to exercise therapy in the management of knee OA, producing similar improvements in functional capacity.

Trial registration: Current Controlled Trials ISRCTN85231954.

Figures

Figure 1
Figure 1
Participant flow.

References

    1. Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, Kelly-Hayes M, Wolf PA, Kreger BE, Kannel WB. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health. 1994;84:351–358. doi: 10.2105/AJPH.84.3.351.
    1. van Baar ME, Assendelft WJ, Dekker J, Oostendorp RA, Bijlsma JW. Effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a systematic review of randomized clinical trials. Arthritis Rheum. 1999;42:1361–1369. doi: 10.1002/1529-0131(199907)42:7<1361::AID-ANR9>;2-9.
    1. Devos-Comby L, Cronan T, Roesch SC. Do exercise and self-management interventions benefit patients with osteoarthritis of the knee? A metaanalytic review. J Rheumatol. 2006;33:744–756.
    1. Fransen M, McConnell S. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev. 2008;4:CD004376.
    1. Roddy E, Zhang W, Doherty M, Arden NK, Barlow J, Birrell F, Carr A, Chakravarty K, Dickson J, Hay E. et al.Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee–the MOVE consensus. Rheumatology (Oxford) 2005;44:67–73. doi: 10.1093/rheumatology/keh399.
    1. Slemenda C, Brandt KD, Heilman DK, Mazzuca S, Braunstein EM, Katz BP, Wolinsky FD. Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med. 1997;127:97–104.
    1. Petterson SC, Barrance P, Buchanan T, Binder-Macleod S, Snyder-Mackler L. Mechanisms underlying quadriceps weakness in knee osteoarthritis. Med Sci Sports Exerc. 2008;40:422–427. doi: 10.1249/MSS.0b013e31815ef285.
    1. Talbot LA, Gaines JM, Ling SM, Metter EJ. A home-based protocol of electrical muscle stimulation for quadriceps muscle strength in older adults with osteoarthritis of the knee. J Rheumatol. 2003;30:1571–1578.
    1. Durmus D, Alayli G, Canturk F. Effects of quadriceps electrical stimulation program on clinical parameters in the patients with knee osteoarthritis. Clin Rheumatol. 2007;26:674–678. doi: 10.1007/s10067-006-0358-3.
    1. Walls RJ, McHugh G, O'Gorman DJ, Moyna NM, O'Byrne JM. Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study. BMC Musculoskelet Disord. 2010;11:119. doi: 10.1186/1471-2474-11-119.
    1. Avramidis K, Strike PW, Taylor PN, Swain ID. Effectiveness of electric stimulation of the vastus medialis muscle in the rehabilitation of patients after total knee arthroplasty. Arch Phys Med Rehabil. 2003;84:1850–1853. doi: 10.1016/S0003-9993(03)00429-5.
    1. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15:1833–1840.
    1. Brazier JE, Harper R, Jones NM, O'Cathain A, Thomas KJ, Usherwood T, Westlake L. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ. 1992;305:160–164. doi: 10.1136/bmj.305.6846.160.
    1. Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 2005;35:191–212. doi: 10.2165/00007256-200535030-00002.
    1. Ettinger WH Jr, Burns R, Messier SP, Applegate W, Rejeski WJ, Morgan T, Shumaker S, Berry MJ, O'Toole M, Monu J, Craven T. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST) JAMA. 1997;277:25–31. doi: 10.1001/jama.1997.03540250033028.
    1. de Jong OR, Hopman-Rock M, Tak EC, Klazinga NS. An implementation study of two evidence-based exercise and health education programmes for older adults with osteoarthritis of the knee and hip. Health Educ Res. 2004;19:316–325. doi: 10.1093/her/cyg028.
    1. van Baar ME, Dekker J, Oostendorp RA, Bijl D, Voorn TB, Bijlsma JW. Effectiveness of exercise in patients with osteoarthritis of hip or knee: nine months' follow up. Ann Rheum Dis. 2001;60:1123–1130. doi: 10.1136/ard.60.12.1123.
    1. Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers M. A clinical trial of neuromuscular electrical stimulation in improving quadriceps muscle strength and activation among women with mild and moderate osteoarthritis. Phys Ther. 2010;90:1441–1452. doi: 10.2522/ptj.20090330.
    1. Buchner DM, Larson EB, Wagner EH, Koepsell TD, de Lateur BJ. Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing. 1996;25:386–391. doi: 10.1093/ageing/25.5.386.
    1. Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110:223–234. doi: 10.1007/s00421-010-1502-y.
    1. Stratford PW, Kennedy DM, Woodhouse LJ. Performance measures provide assessments of pain and function in people with advanced osteoarthritis of the hip or knee. Phys Ther. 2006;86:1489–1496. doi: 10.2522/ptj.20060002.
    1. Terwee CB, Mokkink LB, Steultjens MP, Dekker J. Performance-based methods for measuring the physical function of patients with osteoarthritis of the hip or knee: a systematic review of measurement properties. Rheumatology (Oxford) 2006;45:890–902. doi: 10.1093/rheumatology/kei267.
    1. Kennedy DM, Stratford PW, Wessel J, Gollish JD, Penney D. Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskelet Disord. 2005;6:3. doi: 10.1186/1471-2474-6-3.
    1. Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc. 2005;37:1291–1299. doi: 10.1249/01.mss.0000175090.49048.41.
    1. Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 1988;64:1038–1044.
    1. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36:133–149. doi: 10.2165/00007256-200636020-00004.
    1. Zory RF, Jubeau MM, Maffiuletti NA. Contractile impairment after quadriceps strength training via electrical stimulation. J Strength Cond Res. 2010;24:458–464. doi: 10.1519/JSC.0b013e3181c06d25.
    1. Deley G, Millet GY, Borrani F, Lattier G, Brondel L. Effects of two types of fatigue on the VO(2) slow component. Int J Sports Med. 2006;27:475–482. doi: 10.1055/s-2005-865837.
    1. Conroy MB, Kwoh CK, Krishnan E, Nevitt MC, Boudreau R, Carbone LD, Chen H, Harris TB, Newman AB, Goodpaster BH. Muscle strength, mass, and quality in older men and women with knee osteoarthritis. Arthritis Care Res (Hoboken) 2012;64:15–21. doi: 10.1002/acr.20588.
    1. Chamberlain MA, Care G, Harfield B. Physiotherapy in osteoarthrosis of the knees. A controlled trial of hospital versus home exercises. Int Rehabil Med. 1982;4:101–106.

Source: PubMed

3
Subscribe