Experimental study on effect of hydroalcoholic extract of Emblica officinalis fruits on glucose homeostasis and metabolic parameters

Snehal S Patel, Ramesh K Goyal, Rajendra S Shah, Pravin R Tirgar, Pinakin D Jadav, Snehal S Patel, Ramesh K Goyal, Rajendra S Shah, Pravin R Tirgar, Pinakin D Jadav

Abstract

Polyphenols from natural source are potential therapeutics that act alone or supplement anti-diabetic drugs in the prevention and treatment of diabetes. The present investigation was undertaken to study the effect of hydroalcoholic extract (HE) of fruits of Emblica officinalis on type 1 diabetic rats. Diabetes was induced by streptozotocin (STZ) (45 mg/kg i.v.). HE (100 mg/kg, p.o.) was administered for 4 weeks and at the end of treatment, blood samples were collected and analyzed for various biochemical parameters. STZ produced a diabetic state exhibiting all the cardinal symptoms such as loss of body weight, polydipsia, polyuria, glucosuria, polyphagia, hypoinsulinemia, and hyperglycemia associated with hypercholesterolemia and hypertriglyceridemia. Treatment with HE prevented cardinal symptoms and caused significant decrease in fasting serum glucose, AUCglucose, cholesterol, triglyceride, low-density lipoprotein (LDL) and very LDL in diabetic rats. However, insulin, AUCinsulin, and serum high-density lipoprotein level were not significantly altered by treatment. Treatment also reduced lipid peroxidation and increased anti-oxidant parameters in the liver homogenates of diabetic rats. Polyphenol enriched fraction of HE significantly improved disarranged carbohydrate and lipid metabolism of chemically induced diabetes in rats. The mechanism of its anti-diabetic activity appears to be either improvement in peripheral glucose utilization, increased insulin sensitivity, or anti-oxidant property.

Keywords: Anti-diabetic; Emblica officinalis; anti-hyperlipidemic; anti-oxidant; oxidative stress; polyphenol; streptozotocin.

Figures

Figure 1
Figure 1
Effect of chronic treatment with hydroalcoholic extract (HE) of Emblica officinalis in non-diabetic control and diabetic rats. Each bar represents mean ± SEM of six animals. CON-non-diabetic control, COHA-non-diabetic control treated with HE, DIC-diabetic control, and DIHA-diabetic animals treated with HE, *: Significantly different from diabetic control animals (P< 0.05). (ANOVA followed by Tukey's multiple comparison test)
Figure 2
Figure 2
Effect of chronic treatment with hydroalcoholic extract (HE) of E. officinalis on anti-oxidant parameters in non-diabetic control and diabetic rats. Each bar represents mean ± SEM of six animals. CON-non-diabetic control, COHA-non-diabetic control treated with HE, DIC-diabetic control, and DIHA-diabetic animals treated with HE, *: Significantly different from diabetic control animals (P< 0.05). (ANOVA followed by Tukey's multiple comparison test)

References

    1. Patel SS, Goyal RK. Emblica officinalis Geart.: A comprehensive review on phytochemistry, pharmacology and ethnomedicinal uses. Res J Med Plant. 2012;6:6–16.
    1. Kirtikar KR, Basu BD. Indian Medicinal Plants. 11th ed. Vol. 3. Uttaranchal, India: Oriental Enterprises; 1935. Emblica officinalis; pp. 1029–30.
    1. Zhang YJ, Tanaka T, Yang CR, Kouno I. New phenolic constituents from the fruit juice of Phyllanthus Emblica. Chem Pharm Bull (Tokyo) 2001;49:537–40.
    1. Kumaran A, Karunakaran RJ. Nitric oxide radical scavenging active components from Phyllanthus Emblica L. Plant Foods Hum Nutr. 2006;61:1–5.
    1. Anila L, Vijayalakshmi NR. Antioxident action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats. Food Chem. 2003;83:569–74.
    1. Iwai K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A (y) mice. Plant Foods Hum Nutr. 2008;63:163–9.
    1. El-Alfy AT, Ahmed AA, Fatani AJ. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res. 2005;52:264–70.
    1. Anila L, Vijayalakshmi NR. Flavonoids from Emblica officinalis and Mangifera indica-effectiveness for dyslipidemia. J Ethnopharmacol. 2002;79:81–7.
    1. Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J Nutr. 2005;135:165–71.
    1. Yugarani T, Tan BK, Das NP. The effects of tannic acid on serum and liver lipids of RAIF and RICO rats fed on high fat diet. Comp Biochem Physiol Comp Physiol. 1993;104:339–43.
    1. Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci. 1998;854:435–42.
    1. Gao X, Ohlander M, Jeppsson N, Björk L, Trajkovski V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem. 2000;48:1485–90.
    1. Patel SS, Goyal RK. Prevention of diabetes-induced myocardial dysfunction in rats using the juice of the Emblica officinalis fruit. Exp Clin Cardiol. 2011;16:87–91.
    1. Olefsky JM. LIlly lecture 1980. Insulin resistance and insulin action. An in vitro and in vivo perspective. Diabetes. 1981;30:148–62.
    1. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.
    1. Aebi H. Oxidoreductases acting on groups other than CHOH: Catalase. In: Colowick SP, Kaplan NO, Packer L, editors. Methods in Enzymology. London: Academic Press; 1984. pp. 121–5.
    1. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–78.
    1. Slater TF, Sawyer BC. The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. Biochem J. 1971;123:805–14.
    1. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
    1. Chatterjea MN, Shinde R. Textbook of Medical Biochemistry. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Ltd; 2002. Metabolism of Proteins and Amino acids; pp. 437–495.
    1. Aslan M, Deliorman Orhan D, Orhan N, Sezik E, Yesilada E. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J Ethnopharmacol. 2007;109:54–9.
    1. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr. 2001;131:2242–7.
    1. Al-Awwadi N, Azay J, Poucheret P, Cassanas G, Krosniak M, Auger C, et al. Antidiabetic activity of red wine polyphenolic extract, ethanol, or both in streptozotocin-treated rats. J Agric Food Chem. 2004;52:1008–16.
    1. Huang TH, Peng G, Kota BP, Li GQ, Yamahara J, Roufogalis BD, et al. Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-gamma and identification of an active component. Toxicol Appl Pharmacol. 2005;207:160–9.
    1. Kusirisin W, Srichairatanakool S, Lerttrakarnnon P, Lailerd N, Suttajit M, Jaikang C, et al. Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med Chem. 2009;5:139–47.
    1. Bakhotmah BA, Alzahrani HA. Self-reported use of complementary and alternative medicine (CAM) products in topical treatment of diabetic foot disorders by diabetic patients in Jeddah, Western Saudi Arabia. BMC Res Notes. 2010;3:254–61.
    1. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J. 2006;47:670–5.
    1. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, et al. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7:15–25.
    1. Scartezzini P, Antognoni F, Raggi MA, Poli F, Sabbioni C. Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of Emblica officinalis Gaertn. J Ethnopharmacol. 2006;104:113–8.
    1. Manchem VP, Goldfine ID, Kohanski RA, Cristobal CP, Lum RT, Schow SR, et al. A novel small molecule that directly sensitizes the insulin receptor in vitro and in vivo. Diabetes. 2001;50:824–30.
    1. Nagareddy PR, Vasudevan H, McNeill JH. Oral administration of sodium tungstate improves cardiac performance in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 2005;83:405–11.
    1. Rieusset J, Touri F, Michalik L, Escher P, Desvergne B, Niesor E, et al. A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol. 2002;16:2628–44.

Source: PubMed

3
Subscribe