The dating of thrombus organization in cases of pulmonary embolism: an autopsy study

Gelsomina Mansueto, Dario Costa, Emanuele Capasso, Federica Varavallo, Giuseppina Brunitto, Rosanna Caserta, Salvatore Esposito, Massimo Niola, Celestino Sardu, Raffaele Marfella, Claudio Napoli, Mariano Paternoster, Gelsomina Mansueto, Dario Costa, Emanuele Capasso, Federica Varavallo, Giuseppina Brunitto, Rosanna Caserta, Salvatore Esposito, Massimo Niola, Celestino Sardu, Raffaele Marfella, Claudio Napoli, Mariano Paternoster

Abstract

Background: Pulmonary embolism (PE) is associated to high mortality rate worldwide. However, the diagnosis of PE often results inaccurate. Many cases of PE are incorrectly diagnosed or missed and they are often associated to sudden unexpected death (SUD). In forensic practice, it is important to establish the time of thrombus formation in order to determine the precise moment of death. The autopsy remains the gold standard method for the identification of death cause allowing the determination of discrepancies between clinical and autopsy diagnoses. The aim of our study was to verify the morphological and histological criteria of fatal cases of PE and evaluate the dating of thrombus formation considering 5 ranges of time.

Methods: Pulmonary vessels sections were collected from January 2010 to December 2017. Sections of thrombus sampling were stained with hematoxylin and eosin. The content of infiltrated cells, fibroblasts and collagen fibers were scored using a semi-quantitative three-point scale of range values.

Results: The 30 autopsies included 19 males (63.3%) and 11 females (36.7%) with an average age of 64.5 ± 12.3 years. The time intervals were as follows: early (≤1 h), recent (> 1 h to 24 h), recent-medium (> 24 h to 48 h), medium (> 48 h to 72 h) and old (> 72 h). In the first hour, we histologically observed the presence of platelet aggregation by immunofluorescence method for factor VIII and fibrinogen. The presence of lymphocytes has been identified from recent thrombus (> 1 h to 24 h) and the fibroblast cells were peripherally located in vascular tissue between 48 and 72 h, whereas they resulted central and copious after 72 h.

Conclusions: After a macroscopic observation and a good sampling traditional histology, it is important to identify the time of thrombus formation. We identified histologically a range of time in the physiopathology of the thrombus (early, recent, recent-medium, medium, old), allowing to determine the dating of thrombus formation and the exact time of death.

Clinical trial number: NCT03887819.

Trial registration: The trial registry is Cliniclatrials.gov, with the unique identifying number NCT03887819. The date of registration was 03/23/2019 and it was "Retrospectively registered".

Keywords: Forensic autopsy; Histology; Pulmonary embolism; Sudden unexpected death; Thrombus dating.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Thrombus formation in the first hour in SUD. a) H&E staining showing the thrombus overview of platelet aggregation below the vascular wall (5x magnification); b) H&E staining showing the thrombus overview of platelet aggregation below the vascular wall (10x magnification); c) Immunofluorescence indicating the accumulation of factor VIII in the vascular wall (white arrow); d-e) Immunofluorescence indicated fibrinogen amount in the vascular wall (white arrows)
Fig. 2
Fig. 2
Immunohistochemistry for anti-CD3 antibody at different times. a) Negative immunohistochemistry for anti-CD3 in a case of SUD (10x magnification). The white arrow indicates the T lymphocytes at different time b) > 1 h to 24 h; c) > 24 h to 48 h; d) > 48 h to 72 h in different cases of PE death
Fig. 3
Fig. 3
Fibrosis score atdifferent times and revascularization. a) In the first hour and b) up to 24 h’ absence of fibrosis with absence of red signal. In the following hours c) > 24 h to 48 h, d) > 48 h to 72 h, e) > 72 h there is an increase in the signal (PricoSirius Red/Fast Green stain; 10x magnification). f) The black arrow indicates revascularization in the old thrombus after 72 h (Immunohistochemistry for anti-CD31 antibody; × 10 magnification)

References

    1. Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis. 2016;41:3–14. doi: 10.1007/s11239-015-1311-6.
    1. Turetz M, Sideris AT, Friedman OA, Triphathi N, Horowitz JM. Epidemiology, pathophysiology, and natural history of pulmonary embolism. SeminInterventRadiol. 2018;35:92–98.
    1. Goldhaber SZ. Pulmonary embolism. Lancet. 2004;363:1295–1305. doi: 10.1016/S0140-6736(04)16004-2.
    1. Jiménez David, Bikdeli Behnood, Barrios Deisy, Morillo Raquel, Nieto Rosa, Guerassimova Ina, Muriel Alfonso, Jara-Palomares Luis, Moores Lisa, Tapson Victor, Yusen Roger D., Monreal Manuel. Management appropriateness and outcomes of patients with acute pulmonary embolism. European Respiratory Journal. 2018;51(5):1800445. doi: 10.1183/13993003.00445-2018.
    1. Pollack CV, Schreiber D, Goldhaber SZ, Slattery D, Fanikos J, O'Neil BJ, Thompson JR, Hiestand B, Briese BA, Pendleton RC, Miller CD, Kline JA. Clinical characteristics, management, and outcomes of patients diagnosed with acute pulmonary embolism in the emergency department: initial report of EMPEROR (multicenter emergency medicine pulmonary embolism in the real world registry) J Am CollCardiol. 2011;57:700–706. doi: 10.1016/j.jacc.2010.05.071.
    1. Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galiè N, et al. ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35:3033–3069. doi: 10.1093/eurheartj/ehu243.
    1. Goldstein S. The necessity of a uniform definition of sudden coronary death: witnessed death within 1 hour of the onset of acute symptoms. Am Heart J. 1982;103:156–159. doi: 10.1016/0002-8703(82)90552-X.
    1. Ro A, Kageyama N, Tanifuji T, Fukunaga T. Pulmonary thromboembolism: overview and update from medicolegal aspects. Leg Med (Tokyo) 2008;10:57–71. doi: 10.1016/j.legalmed.2007.09.003.
    1. Weber MA, Ashworth MT, Risdon RA, Hartley JC, Malone M, Sebire NJ. The role of post-mortem investigations in determining the cause of sudden unexpected death in infancy. ArchDis Child. 2008;93:1048–1053. doi: 10.1136/adc.2007.136739.
    1. Basso C, Aguilera B, Banner J, Cohle S, d'Amati G, de Gouveia RH, di Gioia C, Fabre A, Gallagher PJ, Leone O, Lucena J, Mitrofanova L, Molina P, Parsons S, Rizzo S, Sheppard MN, Mier MPS, KimSuvarna S, Thiene G. Van derWal a, Vink a, Michaud K; Association for European Cardiovascular Pathology. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017;471:691–705. doi: 10.1007/s00428-017-2221-0.
    1. Tavora F, Crowder CD, Sun CC, Burke AP. Discrepancies between clinical and autopsy diagnoses: a comparison of university, community, and private autopsy practices. Am J ClinPathol. 2008;129:102–109.
    1. Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int. 2009;186:22–28. doi: 10.1016/j.forsciint.2009.01.006.
    1. Lucena J, Rico A, Vázquez R, Marín R, Martínez C, Salguero M, Miguel L. Pulmonary embolism and sudden-unexpected death: prospective study on 2477 forensic autopsies performed at the Institute of Legal Medicine in Seville. J Forensic Legal Med. 2009;16:196–201. doi: 10.1016/j.jflm.2008.08.015.
    1. Kline JA. Diagnosis and exclusion of pulmonary embolism. Thromb Res. 2018;163:207–220. doi: 10.1016/j.thromres.2017.06.002.
    1. Margiotta G, Coletti A, Severini S, Tommolini F, Lancia M. Medico-legal aspects of pulmonary thromboembolism. AdvExp Med Biol. 2017;906:407–418. doi: 10.1007/5584_2016_130.
    1. Micallef MJ. The autopsy and diagnosis of pulmonary thrombo-embolism. Forensic Sci Med Pathol. 2018;14:241–243. doi: 10.1007/s12024-018-9950-5.
    1. Steiner I. Pulmonary embolism – temporal changes. CardiovascPathol. 2007;16:248–251.
    1. Carlotti AP, Bachette LG, Carmona F, Manso PH, Vicente WV, Ramalho FS. Discrepancies between clinical diagnoses and autopsy findings in critically ill children: a prospective study. Am J ClinPathol. 2016;146:701–708.
    1. Tejerina EE, Padilla R, Abril E, Frutos-Vivar F, Ballen A, Rodríguez-Barbero JM, Lorente JÁ, Esteban A. Autopsy-detected diagnostic errors over time in the intensive care unit. Hum Pathol. 2018;76:85–90. doi: 10.1016/j.humpath.2018.02.025.
    1. Liu D, Gan R, Zhang W, Wang W, Saiyin H, Zeng W, Liu G. Autopsy interrogation of emergency medicine dispute cases: how often are clinical diagnoses incorrect? J ClinPathol. 2018;71:67–71.
    1. Fineschi V, Bafunno V, Bello S, De Stefano F, Margaglione M, Neri M, Riezzo I, Turillazzi E, Bonsignore A, Vecchione G, Ventura F, Grandone E. Fatalpulmonarythromboembolism. A retrospective autopsy study: searching for genetic thrombophilias (factor V Leiden (G1691A) and FII (G20210A) gene variants) and dating the thrombus. Forensic Sci Int. 2012;214:152–158.
    1. Maffeis V, Nicolè L, Rago C, Fassina A. Histological criteria for age determination of fatal venous thromboembolism. Int J Legal Med. 2018;132:775–780. doi: 10.1007/s00414-017-1705-4.
    1. Paternoster M, Capasso E, Di Lorenzo P, Mansueto G. Fatalexertionalrhabdomyolysis. Literature review and our experience in forensic thanatology. Leg Med (Tokyo) 2018;35:12–17. doi: 10.1016/j.legalmed.2018.09.003.
    1. Mansueto G, Capasso E, Buccelli C, Niola M. Pulmonary eosinophilic inflammatory infiltration post-intensive care in a nearly drowned young man with papillary fibroelastoma: a rare complication discovered by forensic autopsy. Front Med (Lausanne) 2018;4:253. doi: 10.3389/fmed.2017.00253.
    1. Buonomo R, Giacco F, Vasaturo A, Caserta S, Guido S, Pagliara V, Garbi C, Mansueto G, Cassese A, Perruolo G, Oriente F, Miele C, Beguinot F, Formisano P. PED/PEA-15 controls fibroblast motility and wound closure by ERK1/2-dependent mechanisms. J Cell Physiol. 2012;227:2106–2116. doi: 10.1002/jcp.22944.
    1. Sardu C, Barbieri M, Balestrieri ML, Siniscalchi M, Paolisso P, Calabrò P, Minicucci F, Signoriello G, Portoghese M, Mone P, D'Andrea D, Gragnano F, Bellis A, Mauro C, Paolisso G, Rizzo MR, Marfella R. Thrombus aspiration in hyperglycemic ST-elevation myocardial infarction (STEMI) patients: clinical outcomes at 1-year follow-up. Cardiovasc Diabetol. 2018;17(1):152. doi: 10.1186/s12933-018-0795-8.
    1. Sardu C, D'Onofrio N, Mauro C, Balestrieri ML, Marfella R. Thrombus aspiration in hyperglycemic patients with high inflammation levels in coronary Thrombus. J Am Coll Cardiol. 2019;73(4):530–531. doi: 10.1016/j.jacc.2018.10.074.
    1. Heit JA. Venous thromboembolism: disease burden, outcomes and risk factors. J Thromb Haemost. 2007;3:1611–1617. doi: 10.1111/j.1538-7836.2005.01415.x.
    1. Segers K, Dahlback B, Nicolaes GA. Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost. 2007;98:530–542. doi: 10.1160/TH07-02-0150.
    1. Mackman N. Tissue-specific hemostasis in mice. Arterioscler Thromb Vasc Biol. 2005;25:2273–2281. doi: 10.1161/01.ATV.0000183884.06371.52.
    1. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914–918. doi: 10.1038/nature06797.

Source: PubMed

3
Subscribe