Using DNA Metabarcoding To Evaluate the Plant Component of Human Diets: a Proof of Concept

Aspen T Reese, Tyler R Kartzinel, Brianna L Petrone, Peter J Turnbaugh, Robert M Pringle, Lawrence A David, Aspen T Reese, Tyler R Kartzinel, Brianna L Petrone, Peter J Turnbaugh, Robert M Pringle, Lawrence A David

Abstract

Dietary intake is difficult to measure reliably in humans because approaches typically rely on self-reporting, which can be incomplete and biased. In field studies of animals, DNA sequencing-based approaches such as metabarcoding have been developed to characterize diets, but such approaches have not previously been widely applied to humans. Here, we present data derived from sequencing of a chloroplast DNA marker (the P6 loop of the trnL [UAA] intron) in stool samples collected from 11 individuals consuming both controlled and freely selected diets. The DNA metabarcoding strategy resulted in successful PCR amplification in about 50% of samples, which increased to a 70% success rate in samples from individuals eating a controlled plant-rich diet. Detection of plant taxa among sequenced samples yielded a recall of 0.86 and a precision of 0.55 compared to a written diet record during controlled feeding of plant-based foods. The majority of sequenced plant DNA matched common human food plants, including grains, vegetables, fruits, and herbs prepared both cooked and uncooked. Moreover, DNA metabarcoding data were sufficient to distinguish between baseline and treatment diet arms of the study. Still, the relatively high PCR failure rate and an inability to distinguish some dietary plants at the sequence level using the trnL-P6 marker suggest that future methodological refinements are necessary. Overall, our results suggest that DNA metabarcoding provides a promising new method for tracking human plant intake and that similar approaches could be used to characterize the animal and fungal components of our omnivorous diets.IMPORTANCE Current methods for capturing human dietary patterns typically rely on individual recall and as such are subject to the limitations of human memory. DNA sequencing-based approaches, frequently used for profiling nonhuman diets, do not suffer from the same limitations. Here, we used metabarcoding to broadly characterize the plant portion of human diets for the first time. The majority of sequences corresponded to known human foods, including all but one foodstuff included in an experimental plant-rich diet. Metabarcoding could distinguish between experimental diets and matched individual diet records from controlled settings with high accuracy. Because this method is independent of survey language and timing, it could also be applied to geographically and culturally disparate human populations, as well as in retrospective studies involving banked human stool.

Keywords: DNA metabarcoding; diet log; human diet; trnL(UAA)-P6.

Copyright © 2019 Reese et al.

Figures

FIG 1
FIG 1
Most plant taxa (79%) were recorded as present at least once in both diet diaries and metabarcoding. Whereas some plants (19%) were found via metabarcoding but not recorded in diaries, only one (coffee) was recorded in diet diaries but absent in metabarcoding. Common names of taxa unique to one method are specified around the Venn diagram.
FIG 2
FIG 2
Congruence (green) between diet-diary entries from the day preceding sampling and metabarcoding was common for controlled diet ingredients during the plant-diet arm. Disagreement between metabarcoding data and the dietary diary, either false negative or false positive, is indicated in pink. Latin names of foods are presented to the left of the heat map, and common names are given on the right.
FIG 3
FIG 3
Nonmetric multidimensional scaling (NMDS) of metabarcoding (A) and diet diaries (B) shows separation between experimental diet arms. Samples from participants during the free-eating periods are shown in black (n = 18), those from the plant-rich diet period are shown in green (n = 7), and those from the animal-rich diet period are shown in red (n = 2).

References

    1. Thompson FE, Subar AF. 2017. Dietary assessment methodology, p 5–48. In Coulston A, Boushey C, Ferruzzi M, Delahanty L (ed), Nutrition in the prevention and treatment of disease, 4th ed Academic Press, Cambridge, MA.
    1. Archer E, Hand GA, Blair SN. 2013. Validity of U.S. nutritional surveillance: national health and nutrition examination survey caloric energy intake data, 1971–2010. PLoS One 8:e76632. doi:10.1371/journal.pone.0076632.
    1. Archer E, Pavela G, Lavie CJ. 2015. The inadmissibility of what we eat in America and NHANES dietary data in nutrition and obesity research and the scientific formulation of national dietary guidelines. Mayo Clin Proc 90:911–926. doi:10.1016/j.mayocp.2015.04.009.
    1. Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, Thompson FE, Potischman N, Guenther PM, Tarasuk V, Reedy J, Krebs-Smith SM. 2015. Addressing current criticism regarding the value of self-report dietary data. J Nutr 145:2639–2645. doi:10.3945/jn.115.219634.
    1. Sugimoto M, Asakura K, Masayasu S, Sasaki S. 2016. Relatively severe misreporting of sodium, potassium, and protein intake among female dietitians compared with nondietitians. Nutr Res 36:818–826. doi:10.1016/j.nutres.2016.04.011.
    1. Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P. 2012. Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950. doi:10.1111/j.1365-294X.2011.05403.x.
    1. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14. doi:10.1093/nar/gkl938.
    1. Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ, Kuzmina ML, Rubenstein DI, Wang W, Pringle RM. 2015. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc Natl Acad Sci U S A 112:8019–8024. doi:10.1073/pnas.1503283112.
    1. Pringle RM, Kartzinel TR, Palmer TM, Thurman TJ, Fox-Dobbs K, Xu CCY, Hutchinson MC, Coverdale TC, Daskin JH, Evangelista DA, Gotanda KM, Veld N, Wegener JE, Kolbe JJ, Schoener TW, Spiller DA, Losos JB, Barrett R. 2019. Predator-induced collapse of niche structure and species coexistence. Nature 570:58–64. doi:10.1038/s41586-019-1264-6.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107.
    1. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. 2012. Towards next‐generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. doi:10.1111/j.1365-294X.2012.05470.x.
    1. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, Craine J, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Bråthen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sønstebø JH, Murton J, Sher A, Rasmussen M, Rønn R, Mourier T, Cooper A, Austin J, Möller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MTP, Kjær KH, Orlando L, Brochmann C, Taberlet P. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51. doi:10.1038/nature12921.
    1. Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, Sonstebo JH, Ims RA, Yoccoz NG, Taberlet P. 2009. Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 6:16. doi:10.1186/1742-9994-6-16.
    1. Craine JM, Angerer JP, Elmore A, Fierer N. 2016. Continental-scale patterns reveal potential for warming-induced shifts in cattle diet. PLoS One 11:e0161511. doi:10.1371/journal.pone.0161511.
    1. Gebremedhin B, Flagstad O, Bekele A, Chala D, Bakkestuen V, Boessenkool S, Popp M, Gussarova G, Schroder-Nielsen A, Nemomissa S, Brochmann C, Stenseth NC, Epp LS. 2016. DNA metabarcoding reveals diet overlap between the endangered Walia ibex and domestic goats—implications for conservation. PLoS One 11:e0159133. doi:10.1371/journal.pone.0159133.
    1. García-Robledo C, Erickson DL, Staines CL, Erwin TL, Kress WJ. 2013. Tropical plant-herbivore networks: reconstructing species interactions using DNA barcodes. PLoS One 8:e52967. doi:10.1371/journal.pone.0052967.
    1. Budischak SA, Hansen CB, Caudron Q, Garnier R, Kartzinel TR, Pelczer I, Cressler CE, van Leeuwen A, Graham AL. 2018. Feeding immunity: physiological and behavioral responses to infection and resource limitation. Front Immunol 8:1914. doi:10.3389/fimmu.2017.01914.
    1. Craine JM, Towne EG, Miller M, Fierer N. 2015. Climatic warming and the future of bison as grazers. Sci Rep 5:16738. doi:10.1038/srep16738.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. doi:10.1038/nature12820.
    1. Deagle B, Thomas AC, McInnes JC, Clarke LJ, Vesterinen EJ, Clare EL, Kartzinel TR, Eveson JP. 2019. Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data? Mol Ecol 28:391–406. doi:10.1111/mec.14734.
    1. Elbrecht V, Vamos EE, Steinke D, Leese F. 2018. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 6:e4644. doi:10.7717/peerj.4644.
    1. Schnell IB, Bohmann K, Gilbert M. 2015. Tag jumps illuminated–reducing sequence‐to‐sample misidentifications in metabarcoding studies. Mol Ecol Resour 15:1289–1303. doi:10.1111/1755-0998.12402.
    1. Coissac E, Riaz T, Puillandre N. 2012. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 21:1834–1847. doi:10.1111/j.1365-294X.2012.05550.x.
    1. De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P. 2014. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol Ecol Resour 14:306–323. doi:10.1111/1755-0998.12188.
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. doi:10.1126/science.1208344.
    1. Cummings JH, Jenkins DJ, Wiggins HS. 1976. Measurement of the mean transit time of dietary residue through the human gut. Gut 17:210–218. doi:10.1136/gut.17.3.210.
    1. Cunningham KM, Daly J, Horowitz M, Read NW. 1991. Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut 32:483–486. doi:10.1136/gut.32.5.483.
    1. Cummings JH, Hill MJ, Jenkins DJ, Pearson JR, Wiggins HS. 1976. Changes in fecal composition and colonic function due to cereal fiber. Am J Clin Nutr 29:1468–1473. doi:10.1093/ajcn/29.12.1468.
    1. Carmody RN, Wrangham RW. 2009. The energetic significance of cooking. J Hum Evol 57:379–391. doi:10.1016/j.jhevol.2009.02.011.
    1. Ross-Ibarra J, Morrell PL, Gaut BS. 2007. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 104(Suppl 1):8641–8648. doi:10.1073/pnas.0700643104.
    1. Louarn S, Torp AM, Holme IB, Andersen SB, Jensen BD. 2007. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet Resour Crop Evol 54:1717–1725. doi:10.1007/s10722-006-9181-6.
    1. Tonguç M, Griffiths PD. 2004. Genetic relationships of Brassica vegetables determined using database derived sequence repeats. Euphytica 137:193–201. doi:10.1023/B:EUPH.0000041577.84388.43.
    1. Şerban P, Wilson JR, Vamosi JC, Richardson DM. 2008. Plant diversity in the human diet: weak phylogenetic signal indicates breadth. Bioscience 58:151–159. doi:10.1641/B580209.
    1. Termote C, Van Damme P, Djailo B. 2011. Eating from the wild: Turumbu, Mbole and Bali traditional knowledge on non-cultivated edible plants, District Tshopo, DRCongo. Genet Resour Crop Evol 58:585–618. doi:10.1007/s10722-010-9602-4.
    1. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. 2014. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654. doi:10.1038/ncomms4654.
    1. Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. 2016. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1:e00021-16. doi:10.1128/mSystems.00021-16.
    1. Maixner F, Turaev D, Cazenave-Gassiot A, Janko M, Krause-Kyora B, Hoopmann MR, Kusebauch U, Sartain M, Guerriero G, O’Sullivan N, Teasdale M, Cipollini G, Paladin A, Mattiangeli V, Samadelli M, Tecchiati U, Putzer A, Palazoglu M, Meissen J, Losch S, Rausch P, Baines JF, Kim BJ, An HJ, Gostner P, Egarter-Vigl E, Malfertheiner P, Keller A, Stark RW, Wenk M, Bishop D, Bradley DG, Fiehn O, Engstrand L, Moritz RL, Doble P, Franke A, Nebel A, Oeggl K, Rattei T, Grimm R, Zink A. 2018. The iceman’s last meal consisted of fat, wild meat, and cereals. Curr Biol 28:2348–2355. doi:10.1016/j.cub.2018.05.067.
    1. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel C, Arneborg J, Lynnerup N, Craig OE, Swallow DM, Fotakis A, Christensen RJ, Olsen JV, Liebert A, Montalva N, Fiddyment S, Charlton S, Mackie M, Canci A, Bouwman A, Ruhli F, Gilbert MT, Collins MJ. 2014. Direct evidence of milk consumption from ancient human dental calculus. Sci Rep 4:7104. doi:10.1038/srep07104.
    1. Macko SA, Engel MH, Andrusevich V, Lubec G, O’Connell TC, Hedges REM. 1999. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos Trans R Soc Lond B 354:65–76. doi:10.1098/rstb.1999.0360.
    1. Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. 2016. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Mol Ecol Resour 16:176–182. doi:10.1111/1755-0998.12428.
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2017. vegan: Community Ecology Package, vR package version 2.4-2. .
    1. R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. .

Source: PubMed

3
Subscribe