The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans

Yueh-Ming Loo, Patrick M McTamney, Rosalinda H Arends, Michael E Abram, Anastasia A Aksyuk, Seme Diallo, Daniel J Flores, Elizabeth J Kelly, Kuishu Ren, Richard Roque, Kim Rosenthal, Katie Streicher, Kevin M Tuffy, Nicholas J Bond, Owen Cornwell, Jerome Bouquet, Lily I Cheng, James Dunyak, Yue Huang, Anton I Rosenbaum, Venkatesh Pilla Reddy, Hanne Andersen, Robert H Carnahan, James E Crowe Jr, Ana I Kuehne, Andrew S Herbert, John M Dye, Helen Bright, Nicole L Kallewaard, Menelas N Pangalos, Mark T Esser, Yueh-Ming Loo, Patrick M McTamney, Rosalinda H Arends, Michael E Abram, Anastasia A Aksyuk, Seme Diallo, Daniel J Flores, Elizabeth J Kelly, Kuishu Ren, Richard Roque, Kim Rosenthal, Katie Streicher, Kevin M Tuffy, Nicholas J Bond, Owen Cornwell, Jerome Bouquet, Lily I Cheng, James Dunyak, Yue Huang, Anton I Rosenbaum, Venkatesh Pilla Reddy, Hanne Andersen, Robert H Carnahan, James E Crowe Jr, Ana I Kuehne, Andrew S Herbert, John M Dye, Helen Bright, Nicole L Kallewaard, Menelas N Pangalos, Mark T Esser

Abstract

Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19 and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from the lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300-mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained threefold above those of convalescent serum at 9 months after AZD7442 administration. About 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.

Figures

Fig. 1.. Simultaneous binding of AZD1061 and…
Fig. 1.. Simultaneous binding of AZD1061 and AZD8895 (AD7442) to the SARS-CoV-2 RBD blocks binding to ACE2 and potently neutralizes SARS-CoV-2 variants of concern.
(A) AZD8895 and AZD1061 simultaneously bind to distinct, nonoverlapping epitopes on the spike protein RBD and sterically block RBD binding to ACE2. A side-view depiction shows cartoon representations of AZD8895 (blue) and AZD1061 (red) on top of the RBD (white) in surface representation based on co-crystal structures of AZD8895 and AZD1061 with RBD (24). (B) AZD8895, AZD1061, and AZD7442 binding kinetics on the SARS-CoV-2 S trimer (S2P ectodomain protein) are shown. Data shown are from a representative experiment from at least two independent assays (58). (C) AZD8895, AZD1061, and AZD7442 block binding of the RBD to ACE2. Measurements were taken across a series of mAb concentrations and the resulting nonlinear regression curves were used to calculate IC50 values. Data shown were performed in duplicate and represent at least two independent assays. (D) AZD8895, AZD1061, and AZD7442 neutralize the USA-WA1/2020 strain of SARS-CoV-2 in vitro. Nonlinear regression dose-response curves from a representative experiment are shown, with mean and SD error from two or more technical replicates. Mean IC50 values were calculated from three independent experiments. (E) AZD8895, AZD1061, and AZD7442 neutralize SARS-CoV-2 VOC in vitro. Data shown represent fold-change in neutralization potencies (IC50) of AZD8895, AZD1061 and AZD7442 against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) VOC as compared with the USA-WA1/2020 or AUS/VIC01/2020 reference strains. Data shown in solid circles have been published previously (, , , , –35). Data shown in open circles are from this study, performed at Public Health England (Alpha, Beta, Gamma, and Delta), United States Army Medical Research Institute of Infectious Diseases (Alpha and Beta), and Integrated Research Facility, National Institute of Allergy and Infectious Diseases (Alpha and Beta). hACE2, human angiotensin-converting enzyme 2; IC50, half maximal inhibitory concentration; ka, association rate constant; kd, dissociation rate constant; KD, equilibrium dissociation constant; mAb, monoclonal antibody; RBD, receptor binding domain; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation; VOC, variant of concern.
Fig. 2.. AZD7442 shows extended half-life and…
Fig. 2.. AZD7442 shows extended half-life and reduced Fc effector function in vivo.
(A) AZD8895 and AZD1061 binding affinities for human FcRn are shown, measured by SPR with mAbs immobilized and titrated binding of huFcRn at pH 6.0. (B) AZD8895 and AZD1061 exhibited extended in vivo serum half-lives in NHPs. Data shown are mean ± SD. (C) AZD8895 and AZD1061 exhibited reduced binding to FcγR and C1q at physiological serum mAb concentrations. Isotype control = R347-WT, an antibody to HIV glycoprotein gp120 with no TM or YTE modifications in the Fc. Binding response = mAb binding response / ligand binding to probe (background subtraction). (D) AZD8895, AZD1061, and AZD7442 exhibited reduced Fc effector functions as compared with WT mAbs. Ratings were based on normalized AUC values with –, +, ++, and +++ assigned to values <25%, ≥25-50%, ≥50-75%, and ≥75% AUC, respectively. Negative control is an antibody to Ebola virus glycoprotein with no TM or YTE modifications in the Fc. Positive controls are two antibodies to SARS-CoV-2 spike protein RBD with no TM or YTE modifications in the Fc (Pos. Ctrl 1 and 2) and their combination (Pos. Ctrl 3). Ab, antibody; ADCC, antibody-dependent cellular cytotoxicity; ADCD, antibody-dependent complement deposition; ADCP, antibody-dependent cellular phagocytosis; ADEI, antibody-dependent enhancement of infection; ADNKA, antibody-dependent natural killer cell activation; AUC, area under the concentration curve; Fc, fragment crystallizable; FcγR, Fc gamma receptor; huFcRn, human neonatal Fc receptor; IM, intramuscular; IV, intravenous; KD, equilibrium dissociation constant; mAb, monoclonal antibody; Neg Ctrl, negative control; Pos Ctrl, positive control; SD, standard deviation; SPR, surface plasmon resonance; TM, substitution L234F/L235E/P331S in the antibody Fc region; WT, wild-type antibody (no substitution in Fc region).
Fig. 3.. AZD7442 administration protects rhesus macaques…
Fig. 3.. AZD7442 administration protects rhesus macaques against SARS-CoV-2 infection in prophylaxis or treatment settings.
(A) A timeline of the in vivo SARS-CoV-2 challenge study is shown. Six-year-old rhesus macaques weighing 3.6 to 7.3 kg were used in this study. Rhesus macaques in prophylaxis groups received IV infusions of 40 mg/kg isotype control mAb R347-TM-YTE (n = 3), 40 mg/kg AZD7442 (n = 3), 4 mg/kg AZD7442 (n = 4), or 4 mg/kg AZD7442-YTE (n = 4), respectively, 3 days prior to challenge. Rhesus macaques in treatment group (n = 4) received an IV infusion of 40 mg/kg AZD7442 1 day after challenge. Rhesus macaques were challenged with 105 PFU of SARS-CoV-2, split between IT and IN delivery on day 0. BAL and nasal swab samples were collected at days 0, 1, 2, 4, 7, 10, and 14. (B) Geometric mean ± SD viral burden are shown in BAL samples from rhesus macaques receiving isotype control mAb, AZD7442, or AZD7442-YTE as prophylaxis 3 days prior to SARS-CoV-2 challenge. (C) Geometric mean ± SD viral burden are shown in nasal swab samples from rhesus macaques receiving isotype control mAb, AZD7442 or AZD7442-YTE as prophylaxis 3 days prior to SARS-CoV-2 challenge. (D) Geometric mean ± SD viral burden are shown in BAL samples from rhesus macaques receiving isotype control mAb, AZD7442 or AZD7442-YTE as treatment 1 day after SARS-CoV-2 infection. (E) Geometric mean ± SD viral burden are shown in nasal swab samples from rhesus macaques receiving isotype control mAb, AZD7442 or AZD7442-YTE as treatment 1 day after SARS-CoV-2 infection. In (D) and (E), the arrow indicates the day of dosing relative to challenge on day 0. BAL, bronchoalveolar lavage; D, day; IN, intranasal; IT, intratracheal; IV, intravenous; LOD, limit of detection; mAb, monoclonal antibody; PFU, plaque forming unit; RNA, ribonucleic acid; sgmRNA, subgenomic messenger RNA; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation.
Fig. 4.. AZD7442 administration protects cynomolgus macaques…
Fig. 4.. AZD7442 administration protects cynomolgus macaques against SARS-CoV-2 infection and associated lung immune pathology in prophylaxis and treatment.
(A) A timeline of the in vivo SARS-CoV-2 challenge study is shown. 6-year-old cynomolgus macaques weighing 3.2 to 6.3 kg were used in this study. Cynomolgus macaques in prophylaxis groups (all groups n = 3), received IV infusions of 40 mg/kg isotope control mAb R347-TM-YTE, 40 mg/kg AZD7442, 4 mg/kg AZD7442, or 4 mg/kg AZD7442-YTE, respectively, 3 days prior to challenge. Cynomolgus macaques in treatment group (n = 3) received an IV infusion of 40 mg/kg AZD7442 1 day after challenge. Cynomolgus macaques were challenged with 105 TCID50 of SARS-CoV-2, split between IT and IN delivery on day 0. BAL and nasal swab samples were collected at days 0, 1, 2, 4, and 5. Serum was collected on days -3, 0, 1, 2, 4, and 5. All animals were euthanized on day 5 post-infection for histopathology analyses. (B) Geometric mean ± SD viral burden are shown in BAL samples from cynomolgus macaques receiving isotype control mAb or AZD7442 as prophylaxis 3 days prior to SARS-CoV-2 challenge. (C) Geometric mean ± SD viral burden are shown in BAL samples from control cynomolgus macaques receiving isotype control mAb, or cynomolgus macaques receiving AZD7442 or AZD7442-YTE as treatment 1 day after SARS-CoV-2 infection. Arrow (↓) indicates day of dosing relative to challenge on day 0. (D) Lung histology following AZD7442 administration is shown for cynomolgus macaques receiving the indicated treatments. Hematoxylin/eosin-stained lung parenchyma and bronchus are shown from a representative animal (10x magnification). Inset shows 20x magnified image of bronchus. (E) A pathology score was assigned by board-certified veterinary pathologist based on histologic findings on eight lung sections per animal. Data are presented as mean + SD. The scores for one animal from the AZD7442 4 mg/kg prophylaxis dose group was excluded from analysis due to evidence of foreign material (plant matter) in multiple sections and observed inflammation inconsistent with SARS-CoV-2 infection. BAL, bronchoalveolar lavage; D, day; IN, intranasal; IT, intratracheal; IV, intravenous; LOD, limit of detection; mAb, monoclonal antibody; proph, prophylaxis; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation; TCID50, tissue culture infection dose; treat, treatment.
Fig. 5.. AZD7442 exhibits extended half-life, confers…
Fig. 5.. AZD7442 exhibits extended half-life, confers high anti-SARS-CoV-2 neutralizing antibody concentrations, and transudates to the mucosal epithelium in healthy adult participants.
(A) Serum concentrations of AZD7442 were measured over 9 months following single IM or IV administration of AZD7442 in healthy participants. Symbols are observed mean ± SD and lines represent the predicted mean with shaded area representing the 90% prediction interval up to 15 months. (B) Geometric mean neutralizing antibody titers against SARS-CoV-2 are shown over 9 months following single IM or IV doses in healthy adult participants; data represent geometric mean PRNT80 titer ± SD for placebo or AZD7442 and GMT ± 95% CI for convalescent plasma samples (n = 28). (C) Fold-difference or ratio of SARS-CoV-2 neutralizing antibody titers to convalescent antibody titers for AZD7442 and vaccinated individuals is shown; vaccine range and median based on published data for seven different vaccines (13). (D) Concentrations of AZD8895, AZD1061 and AZD7442 (AZD8895 + AZD1061) were measured in the nasal lining fluid following 300 mg IM or 3000 mg IV doses of AZD7442. Graph shows individual and median concentration ± 95% CI. CI, confidence interval; IM, intramuscular; IV, intravenous; PRNT50, median plaque reduction neutralization titer; GMT, geometric mean neutralizing antibody titer; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation.

References

    1. Lopez Bernal J., Andrews N., Gower C., Robertson C., Stowe J., Tessier E., Simmons R., Cottrell S., Roberts R., O’Doherty M., Brown K., Cameron C., Stockton D., McMenamin J., Ramsay M., Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ 373, n1088 (2021). 10.1136/bmj.n1088
    1. Haas E. J., Angulo F. J., McLaughlin J. M., Anis E., Singer S. R., Khan F., Brooks N., Smaja M., Mircus G., Pan K., Southern J., Swerdlow D. L., Jodar L., Levy Y., Alroy-Preis S., Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 397, 1819–1829 (2021). 10.1016/S0140-6736(21)00947-8
    1. Grupper A., Sharon N., Finn T., Cohen R., Israel M., Agbaria A., Rechavi Y., Schwartz I. F., Schwartz D., Lellouch Y., Shashar M., Humoral response to the Pfizer BNT162b2 vaccine in patients undergoing maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 16, 1037–1042 (2021). 10.2215/CJN.03500321
    1. Hagin D., Freund T., Navon M., Halperin T., Adir D., Marom R., Levi I., Benor S., Alcalay Y., Freund N. T., Immunogenicity of Pfizer-BioNTech COVID-19 vaccine in patients with inborn errors of immunity. J. Allergy Clin. Immunol. 148, 739–749 (2021). 10.1016/j.jaci.2021.05.029
    1. Monin L., Laing A. G., Muñoz-Ruiz M., McKenzie D. R., Del Molino Del Barrio I., Alaguthurai T., Domingo-Vila C., Hayday T. S., Graham C., Seow J., Abdul-Jawad S., Kamdar S., Harvey-Jones E., Graham R., Cooper J., Khan M., Vidler J., Kakkassery H., Sinha S., Davis R., Dupont L., Francos Quijorna I., O’Brien-Gore C., Lee P. L., Eum J., Conde Poole M., Joseph M., Davies D., Wu Y., Swampillai A., North B. V., Montes A., Harries M., Rigg A., Spicer J., Malim M. H., Fields P., Patten P., Di Rosa F., Papa S., Tree T., Doores K. J., Hayday A. C., Irshad S., Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: Interim analysis of a prospective observational study. Lancet Oncol. 22, 765–778 (2021). 10.1016/S1470-2045(21)00213-8
    1. Boyarsky B. J., Werbel W. A., Avery R. K., Tobian A. A. R., Massie A. B., Segev D. L., Garonzik-Wang J. M., Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA 325, 1784–1786 (2021). 10.1001/jama.2021.4385
    1. Agha M., Blake M., Chilleo C., Wells A., Haidar G., Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients. medRxiv. 2021. ().10.1101/2021.04.06.21254949
    1. Bergwerk M., Gonen T., Lustig Y., Amit S., Lipsitch M., Cohen C., Mandelboim M., Levin E. G., Rubin C., Indenbaum V., Tal I., Zavitan M., Zuckerman N., Bar-Chaim A., Kreiss Y., Regev-Yochay G., Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med. 385, 1474–1484 (2021). 10.1056/NEJMoa2109072
    1. Marovich M., Mascola J. R., Cohen M. S., Monoclonal antibodies for prevention and treatment of COVID-19. JAMA 324, 131–132 (2020). 10.1001/jama.2020.10245
    1. Jiang S., Hillyer C., Du L., Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 41, 355–359 (2020). 10.1016/j.it.2020.03.007
    1. Wajnberg A., Amanat F., Firpo A., Altman D. R., Bailey M. J., Mansour M., McMahon M., Meade P., Mendu D. R., Muellers K., Stadlbauer D., Stone K., Strohmeier S., Simon V., Aberg J., Reich D. L., Krammer F., Cordon-Cardo C., Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370, 1227–1230 (2020). 10.1126/science.abd7728
    1. Mazzini L., Martinuzzi D., Hyseni I., Benincasa L., Molesti E., Casa E., Lapini G., Piu P., Trombetta C. M., Marchi S., Razzano I., Manenti A., Montomoli E., Comparative analyses of SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibodies from human serum samples. J. Immunol. Methods 489, 112937 (2021). 10.1016/j.jim.2020.112937
    1. Khoury D. S., Cromer D., Reynaldi A., Schlub T. E., Wheatley A. K., Juno J. A., Subbarao K., Kent S. J., Triccas J. A., Davenport M. P., Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021). 10.1038/s41591-021-01377-8
    1. Gottlieb R. L., Nirula A., Chen P., Boscia J., Heller B., Morris J., Huhn G., Cardona J., Mocherla B., Stosor V., Shawa I., Kumar P., Adams A. C., Van Naarden J., Custer K. L., Durante M., Oakley G., Schade A. E., Holzer T. R., Ebert P. J., Higgs R. E., Kallewaard N. L., Sabo J., Patel D. R., Klekotka P., Shen L., Skovronsky D. M., Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A randomized clinical trial. JAMA 325, 632–644 (2021). 10.1001/jama.2021.0202
    1. Gupta A., Gonzalez-Rojas Y., Juarez E., Crespo Casal M., Moya J., Falci D. R., Sarkis E., Solis J., Zheng H., Scott N., Cathcart A. L., Hebner C. M., Sager J., Mogalian E., Tipple C., Peppercorn A., Alexander E., Pang P. S., Free A., Brinson C., Aldinger M., Shapiro A. E.; COMET-ICE Investigators , Early Covid-19 treatment with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 385, 1941–1950 (2021). 10.1056/NEJMoa2107934
    1. Weinreich D. M., Sivapalasingam S., Norton T., Ali S., Gao H., Bhore R., Musser B. J., Soo Y., Rofail D., Im J., Perry C., Pan C., Hosain R., Mahmood A., Davis J. D., Turner K. C., Hooper A. T., Hamilton J. D., Baum A., Kyratsous C. A., Kim Y., Cook A., Kampman W., Kohli A., Sachdeva Y., Graber X., Kowal B., DiCioccio T., Stahl N., Lipsich L., Braunstein N., Herman G., Yancopoulos G. D.; Trial Investigators , REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N. Engl. J. Med. 384, 238–251 (2021a). 10.1056/NEJMoa2035002
    1. , “Phase III double-blind, placebo-controlled study of AZD7442 for post- exposure prophylaxis of COVID-19 in adults (STORM CHASER)” (2020); .
    1. , “Phase III double-blind, placebo-controlled study of AZD7442 for pre-exposure prophylaxis of COVID-19 in adult (PROVENT)” (2020); .
    1. Zost S. J., Gilchuk P., Case J. B., Binshtein E., Chen R. E., Nkolola J. P., Schäfer A., Reidy J. X., Trivette A., Nargi R. S., Sutton R. E., Suryadevara N., Martinez D. R., Williamson L. E., Chen E. C., Jones T., Day S., Myers L., Hassan A. O., Kafai N. M., Winkler E. S., Fox J. M., Shrihari S., Mueller B. K., Meiler J., Chandrashekar A., Mercado N. B., Steinhardt J. J., Ren K., Loo Y. M., Kallewaard N. L., McCune B. T., Keeler S. P., Holtzman M. J., Barouch D. H., Gralinski L. E., Baric R. S., Thackray L. B., Diamond M. S., Carnahan R. H., Crowe J. E. Jr., Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020). 10.1038/s41586-020-2548-6
    1. Robbie G. J., Criste R., Dall’acqua W. F., Jensen K., Patel N. K., Losonsky G. A., Griffin M. P., A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob. Agents Chemother. 57, 6147–6153 (2013). 10.1128/AAC.01285-13
    1. Yu X. Q., Robbie G. J., Wu Y., Esser M. T., Jensen K., Schwartz H. I., Bellamy T., Hernandez-Illas M., Jafri H. S., Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother. 61, e01020–e01016 (2016). 10.1128/AAC.01020-16
    1. Oganesyan V., Gao C., Shirinian L., Wu H., Dall’Acqua W. F., Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr. D Biol. Crystallogr. 64, 700–704 (2008). 10.1107/S0907444908007877
    1. Lobo E. D., Hansen R. J., Balthasar J. P., Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93, 2645–2668 (2004). 10.1002/jps.20178
    1. Dong J., Zost S. J., Greaney A. J., Starr T. N., Dingens A. S., Chen E. C., Chen R. E., Case J. B., Sutton R. E., Gilchuk P., Rodriguez J., Armstrong E., Gainza C., Nargi R. S., Binshtein E., Xie X., Zhang X., Shi P.-Y., Logue J., Weston S., McGrath M. E., Frieman M. B., Brady T., Tuffy K., Bright H., Loo Y.-M., McTamney P., Esser M., Carnahan R. H., Diamond M. S., Bloom J. D., Crowe J. E., Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail. bioRxiv, 2021.2001.2027.428529 (2021).10.1101/2021.01.27.428529
    1. Zost S. J., Gilchuk P., Chen R. E., Case J. B., Reidy J. X., Trivette A., Nargi R. S., Sutton R. E., Suryadevara N., Chen E. C., Binshtein E., Shrihari S., Ostrowski M., Chu H. Y., Didier J. E., MacRenaris K. W., Jones T., Day S., Myers L., Eun-Hyung Lee F., Nguyen D. C., Sanz I., Martinez D. R., Rothlauf P. W., Bloyet L. M., Whelan S. P. J., Baric R. S., Thackray L. B., Diamond M. S., Carnahan R. H., Crowe J. E. Jr., Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 26, 1422–1427 (2020). 10.1038/s41591-020-0998-x
    1. Korber B., Fischer W. M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E. E., Bhattacharya T., Foley B., Hastie K. M., Parker M. D., Partridge D. G., Evans C. M., Freeman T. M., de Silva T. I., McDanal C., Perez L. G., Tang H., Moon-Walker A., Whelan S. P., LaBranche C. C., Saphire E. O., Montefiori D. C., Montefiori D. C.; Sheffield COVID-19 Genomics Group , Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19 (2020). 10.1016/j.cell.2020.06.043
    1. Hou Y. J., Chiba S., Halfmann P., Ehre C., Kuroda M., Dinnon K. H. 3rd, Leist S. R., Schäfer A., Nakajima N., Takahashi K., Lee R. E., Mascenik T. M., Graham R., Edwards C. E., Tse L. V., Okuda K., Markmann A. J., Bartelt L., de Silva A., Margolis D. M., Boucher R. C., Randell S. H., Suzuki T., Gralinski L. E., Kawaoka Y., Baric R. S., SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020). 10.1126/science.abe8499
    1. Chen R. E., Winkler E. S., Case J. B., Aziati I. D., Bricker T. L., Joshi A., Darling T. L., Ying B., Errico J. M., Shrihari S., VanBlargan L. A., Xie X., Gilchuk P., Zost S. J., Droit L., Liu Z., Stumpf S., Wang D., Handley S. A., Stine W. B. Jr., Shi P. Y., Davis-Gardner M. E., Suthar M. S., Knight M. G., Andino R., Chiu C. Y., Ellebedy A. H., Fremont D. H., Whelan S. P. J., Crowe J. E. Jr., Purcell L., Corti D., Boon A. C. M., Diamond M. S., In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature 596, 103–108 (2021). 10.1038/s41586-021-03720-y
    1. Chen R. E., Zhang X., Case J. B., Winkler E. S., Liu Y., VanBlargan L. A., Liu J., Errico J. M., Xie X., Suryadevara N., Gilchuk P., Zost S. J., Tahan S., Droit L., Turner J. S., Kim W., Schmitz A. J., Thapa M., Wang D., Boon A. C. M., Presti R. M., O’Halloran J. A., Kim A. H. J., Deepak P., Pinto D., Fremont D. H., Crowe J. E. Jr., Corti D., Virgin H. W., Ellebedy A. H., Shi P. Y., Diamond M. S., Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021). 10.1038/s41591-021-01294-w
    1. Dejnirattisai W., Zhou D., Supasa P., Liu C., Mentzer A. J., Ginn H. M., Zhao Y., Duyvesteyn H. M. E., Tuekprakhon A., Nutalai R., Wang B., López-Camacho C., Slon-Campos J., Walter T. S., Skelly D., Costa Clemens S. A., Naveca F. G., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P. C., Pauvolid-Correa A., Siqueira M. M., Dold C., Levin R., Dong T., Pollard A. J., Knight J. C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S. C., Carroll M. W., Klenerman P., Barnes E., Dunachie S. J., Paterson N. G., Williams M. A., Hall D. R., Hulswit R. J. G., Bowden T. A., Fry E. E., Mongkolsapaya J., Ren J., Stuart D. I., Screaton G. R., Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184, 2939–2954.e9 (2021). 10.1016/j.cell.2021.03.055
    1. Zhou D., Dejnirattisai W., Supasa P., Liu C., Mentzer A. J., Ginn H. M., Zhao Y., Duyvesteyn H. M. E., Tuekprakhon A., Nutalai R., Wang B., Paesen G. C., Lopez-Camacho C., Slon-Campos J., Hallis B., Coombes N., Bewley K., Charlton S., Walter T. S., Skelly D., Lumley S. F., Dold C., Levin R., Dong T., Pollard A. J., Knight J. C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S., James W., Carroll M. W., Klenerman P., Barnes E., Dunachie S. J., Fry E. E., Mongkolsapaya J., Ren J., Stuart D. I., Screaton G. R., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348–2361.e6 (2021). 10.1016/j.cell.2021.02.037
    1. Baum A., Fulton B. O., Wloga E., Copin R., Pascal K. E., Russo V., Giordano S., Lanza K., Negron N., Ni M., Wei Y., Atwal G. S., Murphy A. J., Stahl N., Yancopoulos G. D., Kyratsous C. A., Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014–1018 (2020). 10.1126/science.abd0831
    1. Wang P., Nair M. S., Liu L., Iketani S., Luo Y., Guo Y., Wang M., Yu J., Zhang B., Kwong P. D., Graham B. S., Mascola J. R., Chang J. Y., Yin M. T., Sobieszczyk M., Kyratsous C. A., Shapiro L., Sheng Z., Huang Y., Ho D. D., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021). 10.1038/s41586-021-03398-2
    1. Wang P., Casner R. G., Nair M. S., Wang M., Yu J., Cerutti G., Liu L., Kwong P. D., Huang Y., Shapiro L., Ho D. D., Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751.e4 (2021). 10.1016/j.chom.2021.04.007
    1. Liu C., Ginn H. M., Dejnirattisai W., Supasa P., Wang B., Tuekprakhon A., Nutalai R., Zhou D., Mentzer A. J., Zhao Y., Duyvesteyn H. M. E., López-Camacho C., Slon-Campos J., Walter T. S., Skelly D., Johnson S. A., Ritter T. G., Mason C., Costa Clemens S. A., Gomes Naveca F., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P. C., Pauvolid-Correa A., Siqueira M. M., Dold C., Temperton N., Dong T., Pollard A. J., Knight J. C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S. C., Malik T., Carroll M. W., Klenerman P., Barnes E., Dunachie S. J., Baillie V., Serafin N., Ditse Z., Da Silva K., Paterson N. G., Williams M. A., Hall D. R., Madhi S., Nunes M. C., Goulder P., Fry E. E., Mongkolsapaya J., Ren J., Stuart D. I., Screaton G. R., Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e13 (2021). 10.1016/j.cell.2021.06.020
    1. VanBlargan L. A., Errico J. M., Halfmann P. J., Zost S. J., Crowe J. E., Purcell L. A., Kawaoka Y., Corti D., Fremont D. H., Diamond M. S., An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies. bioRxiv, (2021).10.1101/2021.12.15.472828
    1. Dejnirattisai W., Huo J., Zhou D., Zahradník J., Supasa P., Liu C., Duyvesteyn H. M. E., Ginn H. M., Mentzer A. J., Tuekprakhon A., Nutalai R., Wang B., Dijokaite A., Khan S., Avinoam O., Bahar M., Skelly D., Adele S., Johnson S. A., Amini A., Ritter T., Mason C., Dold C., Pan D., Assadi S., Bellass A., Omo-Dare N., Koeckerling D., Flaxman A., Jenkin D., Aley P. K., Voysey M., Costa Clemens S. A., Naveca F. G., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P. C., Pauvolid-Correa A., Siqueira M. M., Baillie V., Serafin N., Ditse Z., Silva K. D., Madhi S., Nunes M. C., Malik T., Openshaw P. J., Baillie J. K., Semple M. G., Townsend A. R., Huang K.-Y. A., Tan T. K., Carroll M. W., Klenerman P., Barnes E., Dunachie S. J., Constantinides B., Webster H., Crook D., Pollard A. J., Lambe T., O. consortium, I. C. consortium, Paterson N. G., Williams M. A., Hall D. R., Fry E. E., Mongkolsapaya J., Ren J., Schreiber G., Stuart D. I., Screaton G. R., Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. bioRxiv, (2021).10.1101/2021.12.03.471045
    1. Zhou T., Wang L., Misasi J., Pegu A., Zhang Y., Harris D. R., Olia A. S., Talana C. A., Yang E. S., Chen M., Choe M., Shi W., Teng I.-T., Creanga A., Jenkins C., Leung K., Liu T., Stancofski E.-S. D., Stephens T., Zhang B., Tsybovsky Y., Graham B. S., Mascola J. R., Sullivan N. J., Kwong P. D., Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. bioRxiv, 2021.2012.2027.474307 (2021).10.1101/2021.12.27.474307
    1. FNIH, “OpenData Portal. SARS-CoV-2 Variants & Therapeutics. Therapeutic Activity Explorer” (2022); .
    1. Lee W. S., Wheatley A. K., Kent S. J., DeKosky B. J., Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5, 1185–1191 (2020). 10.1038/s41564-020-00789-5
    1. Winkler E. S., Gilchuk P., Yu J., Bailey A. L., Chen R. E., Chong Z., Zost S. J., Jang H., Huang Y., Allen J. D., Case J. B., Sutton R. E., Carnahan R. H., Darling T. L., Boon A. C. M., Mack M., Head R. D., Ross T. M., Crowe J. E. Jr., Diamond M. S., Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 184, 1804–1820.e16 (2021). 10.1016/j.cell.2021.02.026
    1. Schäfer A., Muecksch F., Lorenzi J. C. C., Leist S. R., Cipolla M., Bournazos S., Schmidt F., Maison R. M., Gazumyan A., Martinez D. R., Baric R. S., Robbiani D. F., Hatziioannou T., Ravetch J. V., Bieniasz P. D., Bowen R. A., Nussenzweig M. C., Sheahan T. P., Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med. 218, e20201993 (2021). 10.1084/jem.20201993
    1. Yamin R., Jones A. T., Hoffmann H. H., Schäfer A., Kao K. S., Francis R. L., Sheahan T. P., Baric R. S., Rice C. M., Ravetch J. V., Bournazos S., Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature 599, 465–470 (2021). 10.1038/s41586-021-04017-w
    1. RECOVERY Collaborative Group, Horby P. W., Mafham M., Peto L., Campbell M., Pessoa-Amorim G., Spata E., Staplin N.,Emberson J. R., Prudon B., Hine P., Brown T., Green C. A., Sarkar R., Desai P., Yates B., Bewick T., Tiberi S., Felton T. , Baillie J. K., Buch M. H., Chappell L. C., Day J. N., Faust S. N., T. Jaki, Jeffery K., Juszczak E., Lim W. S., Montgomery A., Mumford A., Rowan K., Thwaites G., Weinreich D. M., Haynes R. , Landray M. J., Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv, 2021.2006.2015.21258542 (2021).
    1. O’Brien M. P., Forleo-Neto E., Musser B. J., Isa F., Chan K. C., Sarkar N., Bar K. J., Barnabas R. V., Barouch D. H., Cohen M. S., Hurt C. B., Burwen D. R., Marovich M. A., Hou P., Heirman I., Davis J. D., Turner K. C., Ramesh D., Mahmood A., Hooper A. T., Hamilton J. D., Kim Y., Purcell L. A., Baum A., Kyratsous C. A., Krainson J., Perez-Perez R., Mohseni R., Kowal B., DiCioccio A. T., Stahl N., Lipsich L., Braunstein N., Herman G., Yancopoulos G. D., Weinreich D. M.; Covid-19 Phase 3 Prevention Trial Team , Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19. N. Engl. J. Med. 385, 1184–1195 (2021). 10.1056/NEJMoa2109682
    1. Cohen M. S., Nirula A., Mulligan M. J., Novak R. M., Marovich M., Yen C., Stemer A., Mayer S. M., Wohl D., Brengle B., Montague B. T., Frank I., McCulloh R. J., Fichtenbaum C. J., Lipson B., Gabra N., Ramirez J. A., Thai C., Chege W., Gomez Lorenzo M. M., Sista N., Farrior J., Clement M. E., Brown E. R., Custer K. L., Van Naarden J., Adams A. C., Schade A. E., Dabora M. C., Knorr J., Price K. L., Sabo J., Tuttle J. L., Klekotka P., Shen L., Skovronsky D. M., Gyamfi K.-A., Begue J., Borgetti S., Burkholder G., Edupuganti S., Gannon K., Hall C., Horstman V., Hussain R., Mena L., Merritt T., Montano C., Morris J., Patel M., Rashid A., Solomon H., Som M., Taffet G.; BLAZE-2 Investigators , Effect of bamlanivimab vs placebo on incidence of COVID-19 among residents and staff of skilled nursing and assisted living Facilities: A randomized clinical trial. JAMA 326, 46–55 (2021). 10.1001/jama.2021.8828
    1. M. Levin, A. Ustianowski, S. De Wit, O. Launay, M. Avila, S. Seegobin, A. Templeton, Y. Yuan, P. Ambery, H. R. Arends, R. Beavon, K. A. Near, K. W. Padilla, K. Psachoulia, A. Sharbaugh, K. Streicher, M. N. Pangalos, M. T. Esser, R. A. Gasser, in IDWeek. (Virtual, 2021).
    1. Griffin M. P., Yuan Y., Takas T., Domachowske J. B., Madhi S. A., Manzoni P., Simões E. A. F., Esser M. T., Khan A. A., Dubovsky F., Villafana T., DeVincenzo J. P.; Nirsevimab Study Group , Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 383, 415–425 (2020). 10.1056/NEJMoa1913556
    1. Dall’Acqua W. F., Kiener P. A., Wu H., Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281, 23514–23524 (2006). 10.1074/jbc.M604292200
    1. Zhu Q., McLellan J. S., Kallewaard N. L., Ulbrandt N. D., Palaszynski S., Zhang J., Moldt B., Khan A., Svabek C., McAuliffe J. M., Wrapp D., Patel N. K., Cook K. E., Richter B. W. M., Ryan P. C., Yuan A. Q., Suzich J. A., A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci. Transl. Med. 9, eaaj1928 (2017). 10.1126/scitranslmed.aaj1928
    1. Baum A., Ajithdoss D., Copin R., Zhou A., Lanza K., Negron N., Ni M., Wei Y., Mohammadi K., Musser B., Atwal G. S., Oyejide A., Goez-Gazi Y., Dutton J., Clemmons E., Staples H. M., Bartley C., Klaffke B., Alfson K., Gazi M., Gonzalez O., Dick E. Jr., Carrion R. Jr., Pessaint L., Porto M., Cook A., Brown R., Ali V., Greenhouse J., Taylor T., Andersen H., Lewis M. G., Stahl N., Murphy A. J., Yancopoulos G. D., Kyratsous C. A., REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110–1115 (2020). 10.1126/science.abe2402
    1. Jones B. E., Brown-Augsburger P. L., Corbett K. S., Westendorf K., Davies J., Cujec T. P., Wiethoff C. M., Blackbourne J. L., Heinz B. A., Foster D., Higgs R. E., Balasubramaniam D., Wang L., Zhang Y., Yang E. S., Bidshahri R., Kraft L., Hwang Y., Žentelis S., Jepson K. R., Goya R., Smith M. A., Collins D. W., Hinshaw S. J., Tycho S. A., Pellacani D., Xiang P., Muthuraman K., Sobhanifar S., Piper M. H., Triana F. J., Hendle J., Pustilnik A., Adams A. C., Berens S. J., Baric R. S., Martinez D. R., Cross R. W., Geisbert T. W., Borisevich V., Abiona O., Belli H. M., de Vries M., Mohamed A., Dittmann M., Samanovic M. I., Mulligan M. J., Goldsmith J. A., Hsieh C. L., Johnson N. V., Wrapp D., McLellan J. S., Barnhart B. C., Graham B. S., Mascola J. R., Hansen C. L., Falconer E., The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci. Transl. Med. 13, eabf1906 (2021). 10.1126/scitranslmed.abf1906
    1. Williamson B. N., Feldmann F., Schwarz B., Meade-White K., Porter D. P., Schulz J., van Doremalen N., Leighton I., Yinda C. K., Pérez-Pérez L., Okumura A., Lovaglio J., Hanley P. W., Saturday G., Bosio C. M., Anzick S., Barbian K., Cihlar T., Martens C., Scott D. P., Munster V. J., de Wit E., Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585, 273–276 (2020). 10.1038/s41586-020-2423-5
    1. Cevik M., Kuppalli K., Kindrachuk J., Peiris M., Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 371, m3862 (2020). 10.1136/bmj.m3862
    1. Chandrashekar A., Liu J., Martinot A. J., McMahan K., Mercado N. B., Peter L., Tostanoski L. H., Yu J., Maliga Z., Nekorchuk M., Busman-Sahay K., Terry M., Wrijil L. M., Ducat S., Martinez D. R., Atyeo C., Fischinger S., Burke J. S., Slein M. D., Pessaint L., Van Ry A., Greenhouse J., Taylor T., Blade K., Cook A., Finneyfrock B., Brown R., Teow E., Velasco J., Zahn R., Wegmann F., Abbink P., Bondzie E. A., Dagotto G., Gebre M. S., He X., Jacob-Dolan C., Kordana N., Li Z., Lifton M. A., Mahrokhian S. H., Maxfield L. F., Nityanandam R., Nkolola J. P., Schmidt A. G., Miller A. D., Baric R. S., Alter G., Sorger P. K., Estes J. D., Andersen H., Lewis M. G., Barouch D. H., SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369, 812–817 (2020). 10.1126/science.abc4776
    1. Mercado N. B., Zahn R., Wegmann F., Loos C., Chandrashekar A., Yu J., Liu J., Peter L., McMahan K., Tostanoski L. H., He X., Martinez D. R., Rutten L., Bos R., van Manen D., Vellinga J., Custers J., Langedijk J. P., Kwaks T., Bakkers M. J. G., Zuijdgeest D., Rosendahl Huber S. K., Atyeo C., Fischinger S., Burke J. S., Feldman J., Hauser B. M., Caradonna T. M., Bondzie E. A., Dagotto G., Gebre M. S., Hoffman E., Jacob-Dolan C., Kirilova M., Li Z., Lin Z., Mahrokhian S. H., Maxfield L. F., Nampanya F., Nityanandam R., Nkolola J. P., Patel S., Ventura J. D., Verrington K., Wan H., Pessaint L., Van Ry A., Blade K., Strasbaugh A., Cabus M., Brown R., Cook A., Zouantchangadou S., Teow E., Andersen H., Lewis M. G., Cai Y., Chen B., Schmidt A. G., Reeves R. K., Baric R. S., Lauffenburger D. A., Alter G., Stoffels P., Mammen M., Van Hoof J., Schuitemaker H., Barouch D. H., Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586, 583–588 (2020). 10.1038/s41586-020-2607-z
    1. Zielinska E., Liu D., Wu H. Y., Quiroz J., Rappaport R., Yang D. P., Development of an improved microneutralization assay for respiratory syncytial virus by automated plaque counting using imaging analysis. Virol. J. 2, 84 (2005). 10.1186/1743-422X-2-84
    1. Wrapp D., Wang N., Corbett K. S., Goldsmith J. A., Hsieh C. L., Abiona O., Graham B. S., McLellan J. S., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020). 10.1126/science.abb2507
    1. Domachowske J. B., Khan A. A., Esser M. T., Jensen K., Takas T., Villafana T., Dubovsky F., Griffin M. P., Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 37, 886–892 (2018). 10.1097/INF.0000000000001916
    1. Griffin M. P., Khan A. A., Esser M. T., Jensen K., Takas T., Kankam M. K., Villafana T., Dubovsky F., Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 61, e01714–e01716 (2017). 10.1128/AAC.01714-16
    1. François B., Jafri H. S., Chastre J., Sánchez-García M., Eggimann P., Dequin P. F., Huberlant V., Viña Soria L., Boulain T., Bretonnière C., Pugin J., Trenado J., Hernandez Padilla A. C., Ali O., Shoemaker K., Ren P., Coenjaerts F. E., Ruzin A., Barraud O., Timbermont L., Lammens C., Pierre V., Wu Y., Vignaud J., Colbert S., Bellamy T., Esser M. T., Dubovsky F., Bonten M. J., Goossens H., Laterre P. F.; COMBACTE Consortium and the SAATELLITE Study Group , Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): A multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis. 21, 1313–1323 (2021). 10.1016/S1473-3099(20)30995-6
    1. Antonia S. J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R., Kurata T., Chiappori A., Lee K. H., de Wit M., Cho B. C., Bourhaba M., Quantin X., Tokito T., Mekhail T., Planchard D., Kim Y. C., Karapetis C. S., Hiret S., Ostoros G., Kubota K., Gray J. E., Paz-Ares L., de Castro Carpeño J., Faivre-Finn C., Reck M., Vansteenkiste J., Spigel D. R., Wadsworth C., Melillo G., Taboada M., Dennis P. A., Özgüroğlu M.; PACIFIC Investigators , Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018). 10.1056/NEJMoa1809697
    1. Furie R. A., Morand E. F., Bruce I. N., Manzi S., Kalunian K. C., Vital E. M., Lawrence Ford T., Gupta R., Hiepe F., Santiago M., Brohawn P. Z., Berglind A., Tummala R., Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, e208–e219 (2019). 10.1016/S2665-9913(19)30076-1
    1. Morand E. F., Furie R. A., Tanaka Y., Bruce I. N., Askanase A. D., Richez C., Bae S.-C., Brohawn P. Z., Pineda L., Berglind A., Tummala R., Anifrolumab in systemic lupus erythematosus. N. Engl. J. Med. 382, 1666 (2020). 10.1056/NEJMoa1912196
    1. Kirchdoerfer R. N., Wang N., Pallesen J., Wrapp D., Turner H. L., Cottrell C. A., Corbett K. S., Graham B. S., McLellan J. S., Ward A. B., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8, 15701 (2018). 10.1038/s41598-018-34171-7
    1. Cornwell O., Radford S. E., Ashcroft A. E., Ault J. R., Comparing hydrogen deuterium exchange and fast photochemical oxidation of proteins: A structural characterisation of wild-type and DeltaN6 beta2-microglobulin. J. Am. Soc. Mass Spectrom. 29, 2413–2426 (2018). 10.1007/s13361-018-2067-y
    1. Huo J., Zhao Y., Ren J., Zhou D., Duyvesteyn H. M. E., Ginn H. M., Carrique L., Malinauskas T., Ruza R. R., Shah P. N. M., Tan T. K., Rijal P., Coombes N., Bewley K. R., Tree J. A., Radecke J., Paterson N. G., Supasa P., Mongkolsapaya J., Screaton G. R., Carroll M., Townsend A., Fry E. E., Owens R. J., Stuart D. I., Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host Microbe 28, 445–454.e6 (2020). 10.1016/j.chom.2020.06.010

Source: PubMed

3
Subscribe