Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections

Helmut Sies, Michael J Parnham, Helmut Sies, Michael J Parnham

Abstract

Ebselen is an organoselenium compound exhibiting hydroperoxide- and peroxynitrite-reducing activity, acting as a glutathione peroxidase and peroxiredoxin enzyme mimetic. Ebselen reacts with a multitude of protein thiols, forming a selenosulfide bond, which results in pleiotropic effects of antiviral, antibacterial and anti-inflammatory nature. The main protease (Mpro) of the corona virus SARS-CoV-2 is a potential drug target, and a screen with over 10,000 compounds identified ebselen as a particularly promising inhibitor of Mpro (Jin, Z. et al. (2020) Nature 582, 289-293). We discuss here the reaction of ebselen with cysteine proteases, the role of ebselen in infections with viruses and with other microorganisms. We also discuss effects of ebselen in lung inflammation. In further research on the inhibition of Mpro in SARS-CoV-2, ebselen can serve as a promising lead compound, if the inhibitory effect is confirmed in intact cells in vivo. Independently of this action, potential beneficial effects of ebselen in COVID-19 are ascribed to a number of targets critical to pathogenesis, such as attenuation of inflammatory oxidants and cytokines.

Keywords: Cysteine protease; Lung inflammation; Organoselenium compounds; SARS-CoV-2.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Depiction of the potential role of inhibitors of the main protease Mproin the SARS-CoV-2 life cycle in the cell. Inhibitors of protease Mpro prevent the replication of SARS-CoV-2. After entering into the host cell, SARS-CoV-2 releases its genomic RNA. The process of translation yields polyproteins pp1a and pp1ab, which are cleaved to form the main protease Mpro and nonstructural proteins (nsps). Mpro is involved in the production of nsps. Nsps is essential for assembly during viral replication. Modified from Mengist et al. [92]. Creative Commons License.
Fig. 2
Fig. 2
In silico analysis of ebselen bound to the main protease Mproof Sars-Cov-2 (PDB code:6Y2E). The selenium atom of the open structure of ebselen (green) establishes a covalent interaction with the Mpro catalytic cysteine (Cys-145). His-41 forms a p-stacking interaction with the aromatic ring of ebselen, and a polar interaction with its carbonyl group. In silico analysis was performed using MOE and ACEMD softwares. Kindly provided by Prof. G. Cozza, Padova.
Fig. 3
Fig. 3
Potential effects of ebselen on viral activity, pulmonary inflammatory responses and circulatory disturbances during COVID-19 infection. Ebselen can target virus sites directly, notably Mpro. It also addresses key sites in the host, attenuating the overproduction of ROS and cytokines and neutrophil infiltration, thereby counteracting pulmonary and vascular inflammation.

References

    1. Jin Z. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293.
    1. Joshi R.S. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn. 2020 doi: 10.1080/07391102.2020.1760137.
    1. Zhang L. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368:409–412.
    1. Müller A., Cadenas E., Graf P., Sies H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen) Biochem. Pharmacol. 1984;33:3235–3239.
    1. Arteel G.E., Briviba K., Sies H. Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen. Chem. Res. Toxicol. 1999;12:264–269.
    1. Zhao R., Masayasu H., Holmgren A. Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc. Natl. Acad. Sci. U. S. A. 2002;99:8579–8584.
    1. Bhowmick D., Srivastava S., D'Silva P., Mugesh G. Highly efficient glutathione peroxidase and peroxiredoxin mimetics protect mammalian cells against oxidative damage. Angew Chem. Int. Ed. Engl. 2015;54:8449–8453.
    1. Carroll L. Interaction kinetics of selenium-containing compounds with oxidants. Free Radic. Biol. Med. 2020;155:58–68.
    1. Parnham M.J., Sies H. The early research and development of ebselen. Biochem. Pharmacol. 2013;86:1248–1253.
    1. Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med. 1993;14:313–323.
    1. Azad G.K., Tomar R.S. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 2014;41:4865–4879.
    1. Schewe T. Molecular actions of ebselen--an antiinflammatory antioxidant. Gen. Pharmacol. 1995;26:1153–1169.
    1. Kil J. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2017;390:969–979.
    1. Parnham M., Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expet Opin. Invest. Drugs. 2000;9:607–619.
    1. Wendel A., Fausel M., Safayhi H., Tiegs G., Otter R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol. 1984;33:3241–3245.
    1. Wendel A., Tiegs G. A novel biologically active seleno-organic compound--VI. Protection by ebselen (PZ 51) against galactosamine/endotoxin-induced hepatitis in mice. Biochem. Pharmacol. 1986;35:2115–2118.
    2. Parnham M.J., Graf E. Seleno-organic compounds and the therapy of hydroperoxide-linked pathological conditions. Biochem. Pharmacol. 1987;36:3095–3102.
    1. Steinbrenner H., Al-Quraishy S., Dkhil M.A., Wunderlich F., Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv. Nutr. 2015;6:73–82.
    1. Zhang J., Taylor E.W., Bennett K., Saad R., Rayman M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020;111:1297–1299.
    1. Beck M.A., Handy J., Levander O.A. Host nutritional status: the neglected virulence factor. Trends Microbiol. 2004;12:417–423.
    1. Beck M.A., Shi Q., Morris V.C., Levander O.A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med. 1995;1:433–436.
    1. Molteni C.G., Principi N., Esposito S. Reactive oxygen and nitrogen species during viral infections. Free Radic. Res. 2014;48:1163–1169.
    1. Peterhans E. Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J. Nutr. 1997;127:962S–965S.
    1. Reshi M.L., Su Y.C., Hong J.R. RNA viruses: ROS-mediated cell death. Int. J Cell Biol. 2014 2014.
    1. Schwarz K.B. Oxidative stress during viral infection: a review. Free Radic. Biol. Med. 1996;21:641–649.
    1. Guillin O.M., Vindry C., Ohlmann T., Chavatte L. Selenium, selenoproteins and viral infection. Nutrients. 2019;11:2101.
    1. Huang Z., Rose A.H., Hoffmann P.R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxidants Redox Signal. 2012;16:705–743.
    2. Delgado-Roche L., Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res. 2020;51:384–387.
    1. Sies H., Berndt C., Jones D.P. Oxidative stress. Annu. Rev. Biochem. 2017;86:715–748.
    1. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383.
    1. Anand K., Ziebuhr J., Wadhwani P., Mesters J.R., Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300:1763–1767.
    1. Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281:4085–4096.
    1. Nikawa T., Schuch G., Wagner G., Sies H. Interaction of ebselen with glutathione S-transferase and papain in vitro. Biochem. Pharmacol. 1994;47:1007–1012.
    1. Leroux F. Identification of ebselen as a potent inhibitor of insulin degrading enzyme by a drug repurposing screening. Eur. J. Med. Chem. 2019;179:557–566.
    1. Campbell E.M., Hope T.J. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 2015;13:471–483.
    1. Thenin-Houssier S. Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrob. Agents Chemother. 2016;60:2195–2208.
    1. Zhang D.W. The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75. J. Enzym. Inhib. Med. Chem. 2020;35:906–912.
    1. Kalantari P. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages. J. Biol. Chem. 2008;283:33183–33190.
    1. Reiser K. The cellular thioredoxin-1/thioredoxin reductase-1 driven oxidoreduction represents a chemotherapeutic target for HIV-1 entry inhibition. PLoS One. 2016;11
    1. Turchan J. Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology. 2003;60:307–314.
    1. Raney K.D., Sharma S.D., Moustafa I.M., Cameron C.E. Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J. Biol. Chem. 2010;285:22725–22731.
    1. Mukherjee S. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem. Biol. 2014;9:2393–2403.
    1. Khanh Le-Trilling V.T., Trilling M. Ub to no good: how cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res. 2020;281 doi: 10.1016/j.virusres.2020.197938.
    1. Clemente V., D'Arcy P., Bazzaro M. Deubiquitinating enzymes in coronaviruses and possible therapeutic opportunities for COVID-19. Int. J. Mol. Sci. 2020;21:3492. doi: 10.3390/ijms21103492.
    1. Graf P.C.F., Jakob U. Redox-regulated molecular chaperones. Cell. Mol. Life Sci. 2002;59:1624–1631.
    1. Hüther A.M., Zhang Y., Sauer A., Parnham M.J. Antimalarial properties of ebselen. Parasitol. Res. 1989;75:353–360.
    1. Lu J. Ebsulfur is a benzisothiazolone cytocidal inhibitor targeting the trypanothione reductase of Trypanosoma brucei. J. Biol. Chem. 2013;288:27456–27468.
    1. Ren X., Zou L., Lu J., Holmgren A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic. Biol. Med. 2018;127:238–247.
    1. Zou L. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol. Med. 2017;9:1165–1178.
    1. Thangamani S., Younis W., Seleem M.N. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci. Rep. 2015;5
    1. Augsburger F., Filippova A., Rasti R., Seredenina T., Lam M., Maghzal G., Mahiout Z., Jansen-Dürr P., Knaus U.G., Doroshow J., Stocker R., Krause K.-H., Jaquet V. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019
    1. Elko E.A. Peroxiredoxins and beyond; Redox systems regulating lung physiology and disease. Antioxidants Redox Signal. 2019;31:1070–1091.
    1. Nakamura Y. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J. Biol. Chem. 2002;277:2687–2694.
    1. Parnham M.J., Leyck S., Graf E., Dowling E.J., Blake D.R. The pharmacology of ebselen. Agents Actions. 1991;32:4–9.
    1. Gao J.X., Issekutz A.C. The effect of ebselen on polymorphonuclear leukocyte and lymphocyte migration to inflammatory reactions in rats. Immunopharmacology. 1993;25:239–251.
    1. Duong C. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2010;299:L425–L433.
    1. Haddad E. Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation. J. Immunol. 2002;169:974–982.
    1. Ishii Y. Ebselen decreases ozone-induced pulmonary inflammation in rats. Lung. 2000;178:225–234.
    1. Petronilho F. Ebselen attenuates lung injury in experimental model of carrageenan-induced pleurisy in rats. Inflammation. 2015;38:1394–1400.
    1. Yatmaz S. Glutathione peroxidase-1 reduces influenza A virus-induced lung inflammation. Am. J. Respir. Cell Mol. Biol. 2013;48:17–26.
    1. Oostwoud L.C. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice. Sci. Rep. 2016;6
    1. Silberstein D.Z. An oxidation-resistant, recombinant alpha-1 antitrypsin produced in Nicotiana benthamiana. Free Radic. Biol. Med. 2018;120:303–310.
    1. Hwang J.W., Yao H., Caito S., Sundar I.K., Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic. Biol. Med. 2013;61:95–110.
    1. Geiler J. N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem. Pharmacol. 2010;79:413–420.
    1. Poe F.L., Corn J.N. Acetylcysteine: a potential therapeutic agent for SARS-CoV-2. Med. Hypotheses. 2020;143
    1. Ezerina D., Takano Y., Hanaoka K., Urano Y., Dick T.P. N-Acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H(2)S and sulfane sulfur production. Cell Chem. Biol. 2018;25:447–459.
    1. Yang G. H2S as a potential defence against Covid-19? Am. J. Physiol. Cell Physiol. 2020 doi: 10.1152/ajpcell.00187.2020.
    1. Pisanu C., Melis C., Squassina A. Lithium pharmacogenetics: where do we stand? Drug Dev. Res. 2016;77:368–373.
    1. Singh N. A safe lithium mimetic for bipolar disorder. Nat. Commun. 2013;4:1332.
    1. Singh N. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology. 2016;41:1768–1778.
    1. Niculescu A.B. Precision medicine for suicidality: from universality to subtypes and personalization. Mol. Psychiatr. 2017;22:1250–1273.
    1. Murru A. Lithium's antiviral effects: a potential drug for CoViD-19 disease? Int. J Bipolar. Disord. 2020;8 doi: 10.1186/s40345-020-00191-4.
    1. Wagner G., Schuch G., Akerboom T.P., Sies H. Transport of ebselen in plasma and its transfer to binding sites in the hepatocyte. Biochem. Pharmacol. 1994;48:1137–1144.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848.
    1. Ismail H.T.H. Hematobiochemical disturbances and oxidative stress after Subacute manganese chloride exposure and potential protective effects of ebselen in rats. Biol. Trace Elem. Res. 2019;187:452–463.
    1. Sturm B. Differential response of iron metabolism to oxidative stress generated by antimycin A and nitrofurantoin. Biochimie. 2006;88:575–581.
    1. Mehta P. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034.
    1. Ali M.H. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am. J. Physiol. 1999;277:L1057–L1065.
    1. Gladilin S. Ebselen lowers plasma interleukin-6 levels and glial heme oxygenase-1 expression after focal photothrombotic brain ischemia. Arch. Biochem. Biophys. 2000;380:237–242.
    1. Wichmann D. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med. 2020 doi: 10.7326/M20-2003.
    1. Lax S.F. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med. 2020 doi: 10.7326/M20-2566.
    1. Ackermann M. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2015432.
    1. de Lucena T.M.C., da Silva Santos A.F., de Lima B.R., de Albuquerque Borborema M.E., de Azevedo Silva J. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab. Syndr. 2020;14:597–600.
    1. DiNicolantonio J.J., McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart. 2020;7
    1. Olas B. Gasomediators (·NO, CO, and H₂S) and their role in hemostasis and thrombosis. Clin. Chim. Acta. 2015;445:115–121.
    1. Feng G. COVID-19 and liver dysfunction: current insights and emergent therapeutic strategies. J. Clin. Transl. Hepatol. 2020;8:18–24.
    1. Kono H., Arteel G.E., Rusyn I., Sies H., Thurman R.G. Ebselen prevents early alcohol-induced liver injury in rats. Free Radic. Biol. Med. 2001;30:403–411.
    1. Koyanagi T. The selenoorganic compound ebselen suppresses liver injury induced by Propionibacterium acnes and lipopolysaccharide in rats. Int. J. Mol. Med. 2001;7:321–327.
    1. Tiegs G. Ebselen protects mice against T cell-dependent, TNF-mediated apoptotic liver injury. J. Pharmacol. Exp. Therapeut. 1998;287:1098–1104.
    1. Mugesh G., du Mont W.W., Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001;101:2125–2179.
    1. Pietka-Ottlik M., Potaczek P., Piasecki E., Mlochowski J. Crucial role of selenium in the virucidal activity of benzisoselenazol-3(2H)-ones and related diselenides. Molecules. 2010;15:8214–8228.
    1. Jacob C., Arteel G.E., Kanda T., Engman L., Sies H. Water-soluble organotellurium compounds: catalytic protection against peroxynitrite and release of zinc from metallothionein. Chem. Res. Toxicol. 2000;13:3–9.
    1. Shaffer L. 15 drugs being tested to treat COVID-19 and how they would work. Nat. Med. 2020 doi: 10.1038/d41591-020-00019-9.
    1. Mengist H.M., Fan X., Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease M(pro) Signal. Transduct. Target Ther. 2020;5 doi: 10.1038/s41392-020-0178-y.

Source: PubMed

3
Subscribe