A Placebo-Controlled, Pseudo-Randomized, Crossover Trial of Botanical Agents for Gulf War Illness: Reishi Mushroom ( Ganoderma lucidum), Stinging Nettle ( Urtica dioica), and Epimedium ( Epimedium sagittatum)

Jarred Younger, Emily K Donovan, Kathleen S Hodgin, Timothy J Ness, Jarred Younger, Emily K Donovan, Kathleen S Hodgin, Timothy J Ness

Abstract

This report is third in a three-part clinical trial series screening potential treatments for Gulf War Illness (GWI). The goal of the project was to rapidly identify agents to prioritize for further efficacy research. We used a placebo-controlled, pseudo-randomized, crossover design to test the effects of reishi mushroom (Ganoderma lucidum), stinging nettle (Uritca dioica), and epimedium (Epimedium sagittatum) in 29 men with GWI. Participants completed 30 days of symptom reports for baseline, then a botanical line consisting of 30 days of placebo, followed by 30 days each of lower-dose and higher-dose botanical. After completing a botanical line, participants were randomized to complete the protocol with another botanical, until they completed three botanical trials. GWI symptom severity, pain, and fatigue were contrasted between the four conditions (baseline, placebo, lower-dose, higher dose) using linear mixed models. GWI symptom severity was unchanged from placebo in the reishi lower-dose condition (p = 0.603), and was higher in the higher-dose condition (p = 0.012). Symptom severity was not decreased from placebo with lower-dose stinging nettle (p = 0.604), but was significantly decreased with higher-dose stinging nettle (p = 0.048). Epimedium showed no significant decreases of GWI symptoms in the lower (p = 0.936) or higher (p = 0.183) dose conditions. Stinging nettle, especially at higher daily dosages, may help reduce the symptoms of GWI. Epimedium does not appear to beneficially affect GWI symptom severity, and reishi may exaggerate symptoms in some GWI sufferers. These results are in a small sample and are preliminary. Further research is required to determine if stinging nettle is indeed helpful for the treatment of GWI, and what dosage is optimal. This trial was registered on ClinicalTrials.gov (NCT02909686).

Keywords: epimedium; reishi; stinging nettle.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study event flow. Participants took three of the tested compounds in the following order: placebo, lower-dose botanical, and higher-dose botanical.
Figure 2
Figure 2
CONSORT Flow diagram. The three participants who discontinued botanicals provided sufficient data to be included in analyses. Four participants could not be included in analyses due to unusable outcome responses (two reported only “zeros” for GWI severity, and two gave all retrospective reports).
Figure 3
Figure 3
Main treatment effects of reishi, stinging nettle, and epimedium on GWI symptom severity. Average symptom levels (0–100) are presented for the baseline, placebo, lower-dose, and higher-dose conditions. * = significantly lower than baseline, *# = significantly lower than baseline and placebo (p’s < 0.05).

References

    1. Mawson A.R., Croft A.M. Gulf War Illness: Unifying Hypothesis for a Continuing Health Problem. Int. J. Environ. Res. Public Health. 2019;16:111. doi: 10.3390/ijerph16010111.
    1. Alhasson F., Das S., Seth R., Dattaroy D., Chandrashekaran V., Ryan C.N., Chan L.S., Testerman T., Burch J., Hofseth L.J., et al. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS ONE. 2017;12:e0172914. doi: 10.1371/journal.pone.0172914.
    1. Janulewicz P.A., Seth R.K., Carlson J.M., Ajama J., Quinn E., Heeren T., Klimas N., Lasley S.M., Horner R.D., Sullivan K., et al. The Gut-Microbiome in Gulf War Veterans: A Preliminary Report. Int. J. Environ. Res. Public Health. 2019;16:3751. doi: 10.3390/ijerph16193751.
    1. Alshelh Z., Albrecht D.S., Bergan C., Akeju O., Clauw D.J., Conboy L., Edwards R.R., Kim M., Lee Y.C., Protsenko E., et al. In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain. Behav. Immun. 2020;87:498–507. doi: 10.1016/j.bbi.2020.01.020.
    1. Parihar V.K., Hattiangady B., Shuai B., Shetty A.K. Mood and memory deficits in a model of Gulf War illness are linked with reduced neurogenesis, partial neuron loss, and mild inflammation in the hippocampus. Neuropsychopharmacology. 2013;38:2348–2362. doi: 10.1038/npp.2013.158.
    1. Johnson G.J., Slater B.C., Leis L.A., Rector T.S., Bach R.R. Blood Biomarkers of Chronic Inflammation in Gulf War Illness. PLoS ONE. 2016;11:e0157855. doi: 10.1371/journal.pone.0157855.
    1. Bose D., Mondal A., Saha P., Kimono D., Sarkar S., Seth R.K., Janulewicz P., Sullivan K., Horner R., Klimas N., et al. TLR Antagonism by Sparstolonin B Alters Microbial Signature and Modulates Gastrointestinal and Neuronal Inflammation in Gulf War Illness Preclinical Model. Brain Sci. 2020;10:532. doi: 10.3390/brainsci10080532.
    1. Wu Y.L., Han F., Luan S.S., Ai R., Zhang P., Li H., Chen L.X. Triterpenoids from Ganoderma lucidum and Their Potential Anti-inflammatory Effects. J. Agric Food Chem. 2019;67:5147–5158. doi: 10.1021/acs.jafc.9b01195.
    1. Dudhgaonkar S., Thyagarajan A., Sliva D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int. Immunopharmacol. 2009;9:1272–1280. doi: 10.1016/j.intimp.2009.07.011.
    1. Liang C.J., Lee C.W., Sung H.C., Chen Y.H., Chiang Y.C., Hsu H.Y., Tseng Y., Li C., Wang S., Chen Y. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1 beta Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice. Evid Based Complement. Alternat Med. 2014;2014:305149. doi: 10.1155/2014/305149.
    1. Joseph S., Sabulal B., George V., Antony K.R., Janardhanan K.K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm. 2011;61:335–342. doi: 10.2478/v10007-011-0030-6.
    1. Feng X., Wang Y. Anti-inflammatory, anti-nociceptive and sedative-hypnotic activities of lucidone D extracted from Ganoderma lucidum. Cell. Mol. Biol. 2019;65:37–42. doi: 10.14715/cmb/2019.65.4.6.
    1. Cai Q., Li Y., Pei G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J. Neuroinflammation. 2017;14:63. doi: 10.1186/s12974-017-0839-0.
    1. Sun L.X., Lin Z.B., Lu J., Li W.D., Niu Y.D., Sun Y., Hu C., Zhang G., Duan X. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol. Res. 2017;65:658–665. doi: 10.1007/s12026-017-8893-3.
    1. Cai Z., Wong C.K., Dong J., Jiao D., Chu M., Leung P.C., Lau C.B.S., Lau C.P., Tam L.S., Lam C.W.K. Anti-inflammatory activities of Ganoderma lucidum (Lingzhi) and San-Miao-San supplements in MRL/lpr mice for the treatment of systemic lupus erythematosus. Chin. Med. 2016;11:23. doi: 10.1186/s13020-016-0093-x.
    1. Batbayar S., Kim M.J., Kim H.W. Medicinal mushroom Lingzhi or Reishi, Ganoderma lucidum (W.Curt.:Fr.) P. Karst., beta-glucan induces Toll-like receptors and fails to induce inflammatory cytokines in NF-kappaB inhibitor-treated macrophages. Int. J. Med. Mushrooms. 2011;13:213–225. doi: 10.1615/IntJMedMushr.v13.i3.10.
    1. Habijanic J., Berovic M., Boh B., Plankl M., Wraber B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-alpha, IL-12, IFN-gamma, IL-2, IL-4, IL-10 and IL-17. N Biotechnol. 2015;32:85–95. doi: 10.1016/j.nbt.2014.07.007.
    1. Li E.K., Tam L.S., Wong C.K., Li W.C., Lam C.W., Wachtel-Galor S., Benzie I.F.F., Bao Y.X., Leung P.C., Tomlinson B. Safety and efficacy of Ganoderma lucidum (lingzhi) and San Miao San supplementation in patients with rheumatoid arthritis: A double-blind, randomized, placebo-controlled pilot trial. Arthritis Rheum. 2007;57:1143–1150. doi: 10.1002/art.22994.
    1. Riehemann K., Behnke B., Schulze-Osthoff K. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kappaB. FEBS Lett. 1999;442:89–94. doi: 10.1016/S0014-5793(98)01622-6.
    1. Konrad A., Mahler M., Arni S., Flogerzi B., Klingelhofer S., Seibold F. Ameliorative effect of IDS 30, a stinging nettle leaf extract, on chronic colitis. Int. J. Colorectal Dis. 2005;20:9–17. doi: 10.1007/s00384-004-0619-z.
    1. Franciskovic M., Gonzalez-Perez R., Orcic D., de Medina F.S., Martinez-Augustin O., Svircev E., Simin N., Mimica-Dukić N. Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L. (Stinging Nettle) Extracts. Phytother. Res. 2017;31:1183–1191. doi: 10.1002/ptr.5836.
    1. Obertreis B., Ruttkowski T., Teucher T., Behnke B., Schmitz H. Ex-vivo in-vitro inhibition of lipopolysaccharide stimulated tumor necrosis factor-alpha and interleukin-1 beta secretion in human whole blood by extractum urticae dioicae foliorum. Arzneimittelforschung. 1996;46:389–394.
    1. Namazi N., Esfanjani A.T., Heshmati J., Bahrami A. The effect of hydro alcoholic Nettle (Urtica dioica) extracts on insulin sensitivity and some inflammatory indicators in patients with type 2 diabetes: A randomized double-blind control trial. Pak. J. Biol. Sci. 2011;14:775–779. doi: 10.3923/pjbs.2011.775.779.
    1. Teucher T., Obertreis B., Ruttkowski T., Schmitz H. Cytokine secretion in whole blood of healthy subjects following oral administration of Urtica dioica L. plant extract. Arzneimittelforschung. 1996;46:906–910.
    1. Johnson T.A., Sohn J., Inman W.D., Bjeldanes L.F., Rayburn K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine. 2013;20:143–147. doi: 10.1016/j.phymed.2012.09.016.
    1. Xu C.Q., Liu B.J., Wu J.F., Xu Y.C., Duan X.H., Cao Y.X., Dong J.C. Icariin attenuates LPS-induced acute inflammatory responses: Involvement of PI3K/Akt and NF-kappaB signaling pathway. Eur. J. Pharmacol. 2010;642:146–153. doi: 10.1016/j.ejphar.2010.05.012.
    1. El-Shitany N.A., Eid B.G. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed. Pharm. 2019;120:109567. doi: 10.1016/j.biopha.2019.109567.
    1. Jin J., Wang H., Hua X., Chen D., Huang C., Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur. J. Pharmacol. 2019;842:20–32. doi: 10.1016/j.ejphar.2018.10.006.
    1. Wang G.Q., Li D.D., Huang C., Lu D.S., Zhang C., Zhou S.Y., Liu J., Zhang F. Icariin Reduces Dopaminergic Neuronal Loss and Microglia-Mediated Inflammation in Vivo and in Vitro. Front. Mol. Neurosci. 2017;10:441. doi: 10.3389/fnmol.2017.00441.
    1. Wang Y., Zhu T., Wang M., Zhang F., Zhang G., Zhao J., Zhang Y., Wu E., Li X. Icariin Attenuates M1 Activation of Microglia and Abeta Plaque Accumulation in the Hippocampus and Prefrontal Cortex by Up-Regulating PPARgamma in Restraint/Isolation-Stressed APP/PS1 Mice. Front. Neurosci. 2019;13:291. doi: 10.3389/fnins.2019.00291.
    1. Zeng K.W., Fu H., Liu G.X., Wang X.M. Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-kappaB and JNK/p38 MAPK pathways. Int. Immunopharmacol. 2010;10:668–678. doi: 10.1016/j.intimp.2010.03.010.
    1. Mo Z.T., Liao Y.L., Zheng J., Li W.N. Icariin protects neurons from endoplasmic reticulum stress-induced apoptosis after OGD/R injury via suppressing IRE1alpha-XBP1 signaling pathway. Life Sci. 2020;255:117847. doi: 10.1016/j.lfs.2020.117847.
    1. Liu L., Zhao Z., Lu L., Liu J., Sun J., Dong J. Icariin and icaritin ameliorated hippocampus neuroinflammation via mediating HMGB1 expression in social defeat model in mice. Int. Immunopharmacol. 2019;75:105799. doi: 10.1016/j.intimp.2019.105799.
    1. Steele L. Prevalence and patterns of Gulf War illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service. Am. J. Epidemiol. 2000;152:992–1002. doi: 10.1093/aje/152.10.992.
    1. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Weathers F.W., Huska J.A., Keane T.M. PCL-M for DSM-IV. National Center for PTSD-Behavioral Science Division; Boston, MA, USA: 1991.
    1. Weathers F.W., Blake D.D., Schnurr P.P., Kaloupek D.G., Marx B.P., Keane T.M. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Interview Available from the National Center for PTSD. [(accessed on 29 March 2021)];2013 Available online: .
    1. Weathers F.W., Bovin M.J., Lee D.J., Sloan D.M., Schnurr P.P., Kaloupek D.G., Keane T.M., Marx B.P. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol. Assess. 2018;30:383–395. doi: 10.1037/pas0000486.
    1. Randall C., Dickens A., White A., Sanders H., Fox M., Campbell J. Nettle sting for chronic knee pain: A randomised controlled pilot study. Complement. Ther. Med. 2008;16:66–72. doi: 10.1016/j.ctim.2007.01.012.
    1. Randall C., Randall H., Dobbs F., Hutton C., Sanders H. Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. J. R. Soc. Med. 2000;93:305–309. doi: 10.1177/014107680009300607.
    1. Rayburn K., Fleischbein E., Song J., Allen B., Kundert M., Leiter C., Bush T. Stinging nettle cream for osteoarthritis. Altern. Ther. Health Med. 2009;15:60–61.
    1. Jacquet A., Girodet P.O., Pariente A., Forest K., Mallet L., Moore N. Phytalgic, a food supplement, vs. placebo in patients with osteoarthritis of the knee or hip: A randomised double-blind placebo-controlled clinical trial. Arthritis Res. Ther. 2009;11:R192. doi: 10.1186/ar2891.
    1. Lin Z., Deng A. Antioxidative and Free Radical Scavenging Activity of Ganoderma (Lingzhi) Adv. Exp. Med. Biol. 2019;1182:271–297. doi: 10.1007/978-981-32-9421-9_12.
    1. Cor D., Knez Z., Knez Hrncic M. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules. 2018;23:649. doi: 10.3390/molecules23030649.
    1. Dhouibi R., Affes H., Ben Salem M., Hammami S., Sahnoun Z., Zeghal K.M., Ksouda K. Screening of pharmacological uses of Urtica dioica and others benefits. Prog. Biophys. Mol. Biol. 2020;150:67–77. doi: 10.1016/j.pbiomolbio.2019.05.008.
    1. He C., Wang Z., Shi J. Pharmacological effects of icariin. Adv. Pharmacol. 2020;87:179–203. doi: 10.1016/bs.apha.2019.10.004.

Source: PubMed

3
Subscribe