Therapeutic Value of Single Nucleotide Polymorphisms on the Efficacy of New Therapies in Patients with Multiple Sclerosis

María José Zarzuelo Romero, Cristina Pérez Ramírez, María Isabel Carrasco Campos, Almudena Sánchez Martín, Miguel Ángel Calleja Hernández, María Carmen Ramírez Tortosa, Alberto Jiménez Morales, María José Zarzuelo Romero, Cristina Pérez Ramírez, María Isabel Carrasco Campos, Almudena Sánchez Martín, Miguel Ángel Calleja Hernández, María Carmen Ramírez Tortosa, Alberto Jiménez Morales

Abstract

The introduction of new therapies for the treatment of multiple sclerosis (MS) is a very recent phenomenon and little is known of their mechanism of action. Moreover, the response is subject to interindividual variability and may be affected by genetic factors, such as polymorphisms in the genes implicated in the pathologic environment, pharmacodynamics, and metabolism of the disease or in the mechanism of action of the medications, influencing the effectiveness of these therapies. This review evaluates the impact of pharmacogenetics on the response to treatment with new therapies in patients diagnosed with MS. The results suggest that polymorphisms detected in the GSTP1, ITGA4, NQO1, AKT1, and GP6 genes, for treatment with natalizumab, ZMIZ1, for fingolimod and dimethyl fumarate, ADA, for cladribine, and NOX3, for dimethyl fumarate, may be used in the future as predictive markers of treatment response to new therapies in MS patients. However, there are few existing studies and their samples are small, making it difficult to generalize the role of these genes in treatment with new therapies. Studies with larger sample sizes and longer follow-up are therefore needed to confirm the results of these studies.

Keywords: alemtuzumab; cladribine; dimethyl fumarate; fingolimod; multiple sclerosis; natalizumab; ocrelizumab; polymorphisms; response; siponimod; teriflunomide.

Conflict of interest statement

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported, and that there are no competing financial interests in relation to the work described in this article.

Figures

Figure 1
Figure 1
Mechanism of action of dimethyl fumarate.
Figure 2
Figure 2
Mechanism of action of teriflunomide.
Figure 3
Figure 3
Mechanism of action of natalizumab.
Figure 4
Figure 4
Mechanism of action of fingolimod.
Figure 5
Figure 5
Mechanism of action of alemtuzumab.
Figure 6
Figure 6
Mechanism of action of cladribine; DCK: Deoxycitidine Kinase.
Figure 7
Figure 7
Mechanism of action of siponimod.
Figure 8
Figure 8
Mechanism of action of ocrelizumab.

References

    1. Pravica V., Popadic D., Savic E., Markovic M., Drulovic J., Mostarica-Stojkovic M. Single nucleotide polymorphisms in multiple sclerosis: Disease susceptibility and treatment response biomarkers. Immunol. Res. 2012;52:42–52. doi: 10.1007/s12026-012-8273-y.
    1. Browne P., Chandraratna D., Angood C., Tremlett H., Baker C., Taylor B.V., Thompson A.J. Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology. 2014;83:1022–1024. doi: 10.1212/WNL.0000000000000768.
    1. Hauser S.L., Oksenberg J.R. The neurobiology of multiple sclerosis: Genes, inflammation, and neurodegeneration. Neuron. 2006;52:61–76. doi: 10.1016/j.neuron.2006.09.011.
    1. McDonald W.I. The mystery of the origin of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 1986;49:113–123. doi: 10.1136/jnnp.49.2.113.
    1. Ebers G.C. McAlpine’s multiple sclerosis. JAMA Neurol. 1991;48:1214. doi: 10.1001/archneur.1991.00530240016003.
    1. Freal J.E., Kraft G.H., Coryell J.K. Symptomatic fatigue in multiple sclerosis. Arch. Phys. Med. Rehabil. 1984;65:135–138.
    1. Krupp L.B., Alvarez L.A., LaRocca N.G., Scheinberg L.C. Fatigue in multiple sclerosis. Arch. Neurol. 1988;45:435–437. doi: 10.1001/archneur.1988.00520280085020.
    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Lucchinetti C., Bruck W., Parisi J., Scheithauer B., Rodriguez M., Lassmann H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>;2-Q.
    1. Boster A.L., Ford C.C., Neudorfer O., Gilgun-Sherki Y. Glatiramer acetate: Long-term safety and efficacy in relapsing-remitting multiple sclerosis. Expert Rev. Neurother. 2015;15:575–586. doi: 10.1586/14737175.2015.1040768.
    1. Rojas J.I., Pappolla A., Patrucco L., Cristiano E., Sanchez F. Do clinical trials for new disease modifying treatments include real world patients with multiple sclerosis? Mult. Scler. Relat. Disord. 2020;39:101931. doi: 10.1016/j.msard.2020.101931.
    1. Ta S.O. Recent advances in the treatment for multiple sclerosis; Current new drugs specific for multiple sclerosis. Noro Psikiyatr. Ars. 2018;55(Suppl. S1):S15–S20.
    1. Sorensen P.S., Fox R.J., Comi G. The window of opportunity for treatment of progressive multiple sclerosis. Curr. Opin. Neurol. 2020;33:262–270. doi: 10.1097/WCO.0000000000000811.
    1. Gold R., Kappos L., Arnold D.L., Bar-Or A., Giovannoni G., Selmaj K., Tornatore C., Sweetser M.T., Yang M., Sheikh S.I., et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 2012;367:1098–1107. doi: 10.1056/NEJMoa1114287.
    1. Fox R.J., Miller D.H., Phillips J.T., Hutchinson M., Havrdova E., Kita M., Yang M., Raghupathi K., Novas M., Sweetser M.T., et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 2012;367:1087–1097. doi: 10.1056/NEJMoa1206328.
    1. O’Connor P., Wolinsky J.S., Confavreux C., Comi G., Kappos L., Olsson T.P., Benzerdjeb H., Truffinet P., Wang L., Miller A., et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 2011;365:1293–1303. doi: 10.1056/NEJMoa1014656.
    1. Polman C.H., O’Connor P.W., Havrdova E., Hutchinson M., Kappos L., Miller D.H., Phillips J.T., Lublin F.D., Giovannoni G., Wajgt A., et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2006;354:899–910. doi: 10.1056/NEJMoa044397.
    1. Cohen J.A., Barkhof F., Comi G., Hartung H.P., Khatri B.O., Montalban X., Pelletier J., Capra R., Gallo P., Izquierdo G., et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010;362:402–415. doi: 10.1056/NEJMoa0907839.
    1. Kappos L., Bar-Or A., Cree B.A.C., Fox R.J., Giovannoni G., Gold R., Vermersch P., Arnold D.L., Arnould S., Scherz T., et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–1273. doi: 10.1016/S0140-6736(18)30475-6.
    1. Havrdova E., Arnold D.L., Cohen J.A., Hartung H.P., Fox E.J., Giovannoni G., Schippling S., Selmaj K.W., Traboulsee A., Compston D.A.S., et al. Alemtuzumab CARE-MS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy. Neurology. 2017;89:1107–1116. doi: 10.1212/WNL.0000000000004313.
    1. Tuohy O., Costelloe L., Hill-Cawthorne G., Bjornson I., Harding K., Robertson N., May K., Button T., Azzopardi L., Kousin-Ezewu O., et al. Alemtuzumab treatment of multiple sclerosis: Long-term safety and efficacy. J. Neurol. Neurosurg. Psychiatry. 2015;86:208–215. doi: 10.1136/jnnp-2014-307721.
    1. Kappos L., Radue E.W., O’Connor P., Polman C., Hohlfeld R., Calabresi P., Selmaj K., Agoropoulou C., Leyk M., Zhang-Auberson L., et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010;362:387–401. doi: 10.1056/NEJMoa0909494.
    1. Giovannoni G., Soelberg Sorensen P., Cook S., Rammohan K.W., Rieckmann P., Comi G., Dangond F., Hicking C., Vermersch P. Efficacy of Cladribine Tablets in high disease activity subgroups of patients with relapsing multiple sclerosis: A post hoc analysis of the CLARITY study. Mult. Scler. 2019;25:819–827. doi: 10.1177/1352458518771875.
    1. Rose J.W., Giovannoni G., Wiendl H., Gold R., Havrdova E., Kappos L., Selmaj K.W., Zhao J., Riester K., Tsao L.C., et al. Consistent efficacy of daclizumab beta across patient demographic and disease activity subgroups in patients with relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2017;17:32–40. doi: 10.1016/j.msard.2017.06.006.
    1. Wolinsky J.S., Engmann N.J., Pei J., Pradhan A., Markowitz C., Fox E.J. An exploratory analysis of the efficacy of ocrelizumab in patients with multiple sclerosis with increased disability. Mult. Scler. J. Exp. Transl. Clin. 2020;6:2055217320911939. doi: 10.1177/2055217320911939.
    1. Comabella M., Vandenbroeck K. Pharmacogenomics and multiple sclerosis: Moving toward individualized medicine. Curr. Neurol. Neurosci. Rep. 2011;11:484–491. doi: 10.1007/s11910-011-0211-1.
    1. Gopal S., Mikulskis A., Gold R., Fox R.J., Dawson K.T., Amaravadi L. Evidence of activation of the Nrf2 pathway in multiple sclerosis patients treated with delayed-release dimethyl fumarate in the Phase 3 DEFINE and CONFIRM studies. Mult. Scler. 2017;23:1875–1883. doi: 10.1177/1352458517690617.
    1. Van Horssen J., Drexhage J.A., Flor T., Gerritsen W., van der Valk P., de Vries H.E. Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radic. Biol. Med. 2010;49:1283–1289. doi: 10.1016/j.freeradbiomed.2010.07.013.
    1. Biotti D., Ciron J. First-line therapy in relapsing remitting multiple sclerosis. Rev. Neurol (Paris) 2018;174:419–428. doi: 10.1016/j.neurol.2018.03.012.
    1. Sharma M., Li X., Wang Y., Zarnegar M., Huang C.Y., Palvimo J.J., Lim B., Sun Z. hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J. 2003;22:6101–6114. doi: 10.1093/emboj/cdg585.
    1. Fewings N.L., Gatt P.N., McKay F.C., Parnell G.P., Schibeci S.D., Edwards J., Basuki M.A., Goldinger A., Fabis-Pedrini M.J., Kermode A.G., et al. The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis. J. Autoimmun. 2017;78:57–69. doi: 10.1016/j.jaut.2016.12.006.
    1. Paffenholz R., Bergstrom R.A., Pasutto F., Wabnitz P., Munroe R.J., Jagla W., Heinzmann U., Marquardt A., Bareiss A., Laufs J., et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev. 2004;18:486–491. doi: 10.1101/gad.1172504.
    1. Kikuchi H., Hikage M., Miyashita H., Fukumoto M. NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene. 2000;254:237–243. doi: 10.1016/S0378-1119(00)00258-4.
    1. Accetta R., Damiano S., Morano A., Mondola P., Paterno R., Avvedimento E.V., Santillo M. Reactive Oxygen Species Derived from NOX3 and NOX5 drive differentiation of human oligodendrocytes. Front. Cell. Neurosci. 2016;10:146. doi: 10.3389/fncel.2016.00146.
    1. Carlstrom K.E., Ewing E., Granqvist M., Gyllenberg A., Aeinehband S., Enoksson S.L., Checa A., Badam T.V.S., Huang J., Gomez-Cabrero D., et al. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat. Commun. 2019;10:3081. doi: 10.1038/s41467-019-11139-3.
    1. Bruneau J.M., Yea C.M., Spinella-Jaegle S., Fudali C., Woodward K., Robson P.A., Sautes C., Westwood R., Kuo E.A., Williamson R.A., et al. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Pt 2Biochem. J. 1998;336:299–303. doi: 10.1042/bj3360299.
    1. Cherwinski H.M., Cohn R.G., Cheung P., Webster D.J., Xu Y.Z., Caulfield J.P., Young J.M., Nakano G., Ransom J.T. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J. Pharmacol. Exp. Ther. 1995;275:1043–1049.
    1. Ruckemann K., Fairbanks L.D., Carrey E.A., Hawrylowicz C.M., Richards D.F., Kirschbaum B., Simmonds H.A. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J. Biol. Chem. 1998;273:21682–21691. doi: 10.1074/jbc.273.34.21682.
    1. Loffler M., Klein A., Hayek-Ouassini M., Knecht W., Konrad L. Dihydroorotate dehydrogenase mRNA and protein expression analysis in normal and drug-resistant cells. Nucleosides Nucleotides Nucleic Acids. 2004;23:1281–1285. doi: 10.1081/NCN-200027547.
    1. Gold R., Wolinsky J.S. Pathophysiology of multiple sclerosis and the place of teriflunomide. Acta Neurol. Scand. 2011;124:75–84. doi: 10.1111/j.1600-0404.2010.01444.x.
    1. Munier-Lehmann H., Vidalain P.O., Tangy F., Janin Y.L. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem. 2013;56:3148–3167. doi: 10.1021/jm301848w.
    1. Allikmets R., Schriml L.M., Hutchinson A., Romano-Spica V., Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998;58:5337–5339.
    1. Kim K.A., Joo H.J., Park J.Y. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur. J. Clin. Pharmacol. 2011;67:129–134. doi: 10.1007/s00228-010-0916-0.
    1. Barnes T., Parry P., Hart I., Jones C., Minet M., Patterson D. Regional mapping of the gene encoding dihydroorotate dehydrogenase, an enzyme involved in UMP synthesis, electron transport, and superoxide generation, to human chromosome region 16q22. Somat. Cell Mol. Genet. 1993;19:405–411. doi: 10.1007/BF01232751.
    1. Mladenovic V., Domljan Z., Rozman B., Jajic I., Mihajlovic D., Dordevic J., Popovic M., Dimitrijevic M., Zivkovic M., Campion G., et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis Rheum. 1995;38:1595–1603. doi: 10.1002/art.1780381111.
    1. Pawlik A., Herczynska M., Kurzawski M., Safranow K., Dziedziejko V., Drozdzik M. The effect of exon (19C > A) dihydroorotate dehydrogenase gene polymorphism on rheumatoid arthritis treatment with leflunomide. Pharmacogenomics. 2009;10:303–309. doi: 10.2217/14622416.10.2.303.
    1. Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: Natalizumab. Nat. Rev. Drug Discov. 2005;4:510–518. doi: 10.1038/nrd1752.
    1. Martinez-Forero I., Pelaez A., Villoslada P. Pharmacogenomics of multiple sclerosis: In search for a personalized therapy. Expert Opin. Pharmacother. 2008;9:3053–3067. doi: 10.1517/14656560802515553.
    1. Alexoudi A., Zachaki S., Stavropoulou C., Gavrili S., Spiliopoulou C., Papadodima S., Karageorgiou C.E., Sambani C. Possible Implication of GSTP1 and NQO1 Polymorphisms on Natalizumab Response in Multiple Sclerosis. Ann. Clin. Lab. Sci. 2016;46:586–591.
    1. Sousa L., de Sa J., Sa M.J., Cerqueira J.J., Martins-Silva A., Portugal Experience with Natalizumab Study G. The efficacy and safety of natalizumab for the treatment of multiple sclerosis in Portugal: A retrospective study. Rev. Neurol. 2014;59:399–406.
    1. Board P.G., Coggan M., Woodcock D.M. The human Pi class glutathione transferase sequence at 12q13-q14 is a reverse-transcribed pseudogene. Genomics. 1992;14:470–473. doi: 10.1016/S0888-7543(05)80243-5.
    1. Ketterer B., Coles B., Meyer D.J. The role of glutathione in detoxication. Environ. Health Perspect. 1983;49:59–69. doi: 10.1289/ehp.834959.
    1. Zhang Z.H., Vekemans S., Aly M.S., Jaspers M., Marynen P., Cassiman J.J. The gene for the alpha 4 subunit of the VLA-4 integrin maps to chromosome 2Q31-32. Blood. 1991;78:2396–2399. doi: 10.1182/blood.V78.9.2396.2396.
    1. Berlin C., Bargatze R.F., Campbell J.J., von Andrian U.H., Szabo M.C., Hasslen S.R., Nelson R.D., Berg E.L., Erlandsen S.L., Butcher E.C. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell. 1995;80:413–422. doi: 10.1016/0092-8674(95)90491-3.
    1. Miller D.H., Khan O.A., Sheremata W.A., Blumhardt L.D., Rice G.P., Libonati M.A., Willmer-Hulme A.J., Dalton C.M., Miszkiel K.A., O’Connor P.W., et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2003;348:15–23. doi: 10.1056/NEJMoa020696.
    1. Durmanova V., Shawkatova I., Javor J., Parnicka Z., Copikova-Cundrakova D., Turcani P., Lisa I., Gajdosechova B., Buc M., Bucova M. VLA4 gene polymorphism and susceptibility to multiple sclerosis in Slovaks. Folia Biol. 2015;61:8–13.
    1. Siegel D., Gustafson D.L., Dehn D.L., Han J.Y., Boonchoong P., Berliner L.J., Ross D. NAD(P)H:quinone oxidoreductase 1: Role as a superoxide scavenger. Mol. Pharmacol. 2004;65:1238–1247. doi: 10.1124/mol.65.5.1238.
    1. Haider L., Fischer M.T., Frischer J.M., Bauer J., Hoftberger R., Botond G., Esterbauer H., Binder C.J., Witztum J.L., Lassmann H. Oxidative damage in multiple sclerosis lesions. Pt 7Brain J. Neurol. 2011;134:1914–1924. doi: 10.1093/brain/awr128.
    1. Staal S.P., Huebner K., Croce C.M., Parsa N.Z., Testa J.R. The AKT1 proto-oncogene maps to human chromosome 14, band q32. Genomics. 1988;2:96–98. doi: 10.1016/0888-7543(88)90114-0.
    1. Rossi S., Motta C., Studer V., Monteleone F., De Chiara V., Buttari F., Barbieri F., Bernardi G., Battistini L., Cutter G., et al. A genetic variant of the anti-apoptotic protein Akt predicts natalizumab-induced lymphocytosis and post-natalizumab multiple sclerosis reactivation. Mult. Scler. 2013;19:59–68. doi: 10.1177/1352458512448106.
    1. Jandrot-Perrus M., Busfield S., Lagrue A.H., Xiong X., Debili N., Chickering T., Le Couedic J.P., Goodearl A., Dussault B., Fraser C., et al. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: A platelet-specific collagen receptor from the immunoglobulin superfamily. Blood. 2000;96:1798–1807. doi: 10.1182/blood.V96.5.1798.
    1. Bender M., Hofmann S., Stegner D., Chalaris A., Bosl M., Braun A., Scheller J., Rose-John S., Nieswandt B. Differentially regulated GPVI ectodomain shedding by multiple platelet-expressed proteinases. Blood. 2010;116:3347–3355. doi: 10.1182/blood-2010-06-289108.
    1. Marshall O., Lu H., Brisset J.C., Xu F., Liu P., Herbert J., Grossman R.I., Ge Y. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol. 2014;71:1275–1281. doi: 10.1001/jamaneurol.2014.1668.
    1. Malak Al-Mojel R.A. Texy Kannankeril, Mohammed Dashti and Rabeah Al-Temaimi, GP6 rs2304166 polymorphism is associated with response to natalizumab in multiple sclerosis patients. BMC. 2019;4:1–6.
    1. Brinkmann V., Davis M.D., Heise C.E., Albert R., Cottens S., Hof R., Bruns C., Prieschl E., Baumruker T., Hiestand P., et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 2002;277:21453–21457. doi: 10.1074/jbc.C200176200.
    1. Mandala S., Hajdu R., Bergstrom J., Quackenbush E., Xie J., Milligan J., Thornton R., Shei G.J., Card D., Keohane C., et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–349. doi: 10.1126/science.1070238.
    1. O’Sullivan C., Dev K.K. The structure and function of the S1P1 receptor. Trends Pharmacol. Sci. 2013;34:401–412. doi: 10.1016/j.tips.2013.05.002.
    1. Fujiwara M., Anstadt E.J., Khanna K.M., Clark R.B. Cbl-b-deficient mice express alterations in trafficking-related molecules but retain sensitivity to the multiple sclerosis therapeutic agent, FTY720. Clin. Immunol. 2015;158:103–113. doi: 10.1016/j.clim.2015.03.018.
    1. Esposito F., Ferre L., Clarelli F., Rocca M.A., Sferruzza G., Storelli L., Radaelli M., Sangalli F., Moiola L., Colombo B., et al. Effectiveness and baseline factors associated to fingolimod response in a real-world study on multiple sclerosis patients. J. Neurol. 2018;265:896–905. doi: 10.1007/s00415-018-8791-1.
    1. Arnold D.L., Banwell B., Bar-Or A., Ghezzi A., Greenberg B.M., Waubant E., Giovannoni G., Wolinsky J.S., Gartner J., Rostasy K., et al. Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: Results from the phase 3 PARADIGMS study. J. Neurol. Neurosurg. Psychiatry. 2020;91:483–492. doi: 10.1136/jnnp-2019-322138.
    1. Pinnell N., Yan R., Cho H.J., Keeley T., Murai M.J., Liu Y., Alarcon A.S., Qin J., Wang Q., Kuick R., et al. The PIAS-like Coactivator Zmiz1 Is a Direct and Selective Cofactor of Notch1 in T Cell Development and Leukemia. Immunity. 2015;43:870–883. doi: 10.1016/j.immuni.2015.10.007.
    1. Hu Q.D., Ang B.T., Karsak M., Hu W.P., Cui X.Y., Duka T., Takeda Y., Chia W., Sankar N., Ng Y.K., et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell. 2003;115:163–175. doi: 10.1016/S0092-8674(03)00810-9.
    1. Bandala-Sanchez E., Zhang Y., Reinwald S., Dromey J.A., Lee B.H., Qian J., Bohmer R.M., Harrison L.C. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat. Immunol. 2013;14:741–748. doi: 10.1038/ni.2610.
    1. Toh B.H., Kyaw T., Tipping P., Bobik A. Immune regulation by CD52-expressing CD4 T cells. Cell. Mol. Immunol. 2013;10:379–382. doi: 10.1038/cmi.2013.35.
    1. Rao S.P., Sancho J., Campos-Rivera J., Boutin P.M., Severy P.B., Weeden T., Shankara S., Roberts B.L., Kaplan J.M. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS ONE. 2012;7:e39416. doi: 10.1371/journal.pone.0039416.
    1. Rodig S.J., Abramson J.S., Pinkus G.S., Treon S.P., Dorfman D.M., Dong H.Y., Shipp M.A., Kutok J.L. Heterogeneous CD52 expression among hematologic neoplasms: Implications for the use of alemtuzumab (CAMPATH-1H) Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006;12:7174–7179. doi: 10.1158/1078-0432.CCR-06-1275.
    1. Ginaldi L., De Martinis M., Matutes E., Farahat N., Morilla R., Dyer M.J., Catovsky D. Levels of expression of CD52 in normal and leukemic B and T cells: Correlation with in vivo therapeutic responses to Campath-1H. Leuk. Res. 1998;22:185–191. doi: 10.1016/S0145-2126(97)00158-6.
    1. Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy. 2001;3:137–143. doi: 10.1080/146532401753174098.
    1. Ruck T., Bittner S., Wiendl H., Meuth S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of action and beyond. Int. J. Mol. Sci. 2015;16:16414–16439. doi: 10.3390/ijms160716414.
    1. Rawstron A.C., Kennedy B., Moreton P., Dickinson A.J., Cullen M.J., Richards S.J., Jack A.S., Hillmen P. Early prediction of outcome and response to alemtuzumab therapy in chronic lymphocytic leukemia. Blood. 2004;103:2027–2031. doi: 10.1182/blood-2002-10-3270.
    1. Coles A.J., Twyman C.L., Arnold D.L., Cohen J.A., Confavreux C., Fox E.J., Hartung H.P., Havrdova E., Selmaj K.W., Weiner H.L., et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet. 2012;380:1829–1839. doi: 10.1016/S0140-6736(12)61768-1.
    1. Sammartino L., Webber L.M., Hogarth P.M., McKenzie I.F., Garson O.M. Assignment of the gene coding for human FcRII (CD32) to bands q23q24 on chromosome 1. Immunogenetics. 1988;28:380–381. doi: 10.1007/BF00364238.
    1. Hibbs M.L., Bonadonna L., Scott B.M., McKenzie I.F., Hogarth P.M. Molecular cloning of a human immunoglobulin G Fc receptor. Proc. Natl. Acad. Sci. USA. 1988;85:2240–2244. doi: 10.1073/pnas.85.7.2240.
    1. Keller C.W., Ruck T., McHugh D., Pfeuffer S., Gross C.C., Korsukewitz C., Melzer N., Klotz L., Meuth S.G., Munz C., et al. Impact of FcgammaR variants on the response to alemtuzumab in multiple sclerosis. Ann. Clin. Transl Neurol. 2019;6:2586–2594. doi: 10.1002/acn3.50935.
    1. Xia M.Q., Tone M., Packman L., Hale G., Waldmann H. Characterization of the CAMPATH-1 (CDw52) antigen: Biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur. J. Immunol. 1991;21:1677–1684. doi: 10.1002/eji.1830210714.
    1. Oko A., Wyrwicz L.S., Glyda M., Idasiak-Piechocka I., Binczak-Kuleta A., Kaczmarczyk M., Drozd A., Ciechanowicz A., Czekalski S. CD52 gene polymorphism and its potential effect on the response to alemtuzumab in renal transplant recipients. Ann. Acad. Med. Stetin. 2009;55:22–26.
    1. Leist T.P., Comi G., Cree B.A., Coyle P.K., Freedman M.S., Hartung H.P., Vermersch P., Casset-Semanaz F., Scaramozza M., on behalf of the oral cladribine for early MS (ORACLE MS) Study Group Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): A phase 3 randomised trial. Lancet Neurol. 2014;13:257–267. doi: 10.1016/S1474-4422(14)70005-5.
    1. Rice G.P., Filippi M., Comi G., Cladribine MRI Study Group Cladribine and progressive MS: Clinical and MRI outcomes of a multicenter controlled trial. Neurology. 2000;54:1145–1155. doi: 10.1212/WNL.54.5.1145.
    1. Kopadze T., Dobert M., Leussink V.I., Dehmel T., Kieseier B.C. Cladribine impedes in vitro migration of mononuclear cells: A possible implication for treating multiple sclerosis. Eur. J. Neurol. 2009;16:409–412. doi: 10.1111/j.1468-1331.2008.02433.x.
    1. Pavloff N., Rivard D., Masson S., Shen S.H., Mes-Masson A.M. Sequence analysis of the large and small subunits of human ribonucleotide reductase. DNA Seq. J. DNA Seq. Mapp. 1992;2:227–234. doi: 10.3109/10425179209020807.
    1. Byrne J.A., Smith P.J. The 11p15.5 ribonucleotide reductase M1 subunit locus is not imprinted in Wilms’ tumour and hepatoblastoma. Hum. Genet. 1993;91:275–277. doi: 10.1007/BF00218271.
    1. Yang-Feng T.L., Barton D.E., Thelander L., Lewis W.H., Srinivasan P.R., Francke U. Ribonucleotide reductase M2 subunit sequences mapped to four different chromosomal sites in humans and mice: Functional locus identified by its amplification in hydroxyurea-resistant cell lines. Genomics. 1987;1:77–86. doi: 10.1016/0888-7543(87)90108-X.
    1. Lotfi K., Juliusson G., Albertioni F. Pharmacological basis for cladribine resistance. Leuk. Lymphoma. 2003;44:1705–1712. doi: 10.1080/1042819031000099698.
    1. Cao X., Mitra A.K., Pounds S., Crews K.R., Gandhi V., Plunkett W., Dolan M.E., Hartford C., Raimondi S., Campana D., et al. RRM1 and RRM2 pharmacogenetics: Association with phenotypes in HapMap cell lines and acute myeloid leukemia patients. Pharmacogenomics. 2013;14:1449–1466. doi: 10.2217/pgs.13.131.
    1. Jhanwar S.C., Berkvens T.M., Breukel C., van Ormondt H., van der Eb A.J., Meera Khan P. Localization of human adenosine deaminase (ADA) gene sequences to the q12----q13.11 region of chromosome 20 by in situ hybridization. Cytogenet. Cell Genet. 1989;50:168–171. doi: 10.1159/000132752.
    1. Polachini C.R., Spanevello R.M., Casali E.A., Zanini D., Pereira L.B., Martins C.C., Baldissareli J., Cardoso A.M., Duarte M.F., da Costa P., et al. Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis. Neuroscience. 2014;266:266–274. doi: 10.1016/j.neuroscience.2014.01.048.
    1. Samuraki M., Sakai K., Odake Y., Yoshita M., Misaki K., Nakada M., Yamada M. Multiple sclerosis showing elevation of adenosine deaminase levels in the cerebrospinal fluid. Mult. Scler. Relat. Disord. 2017;13:44–46. doi: 10.1016/j.msard.2017.02.005.
    1. Laugel B., Borlat F., Galibert L., Vicari A., Weissert R., Chvatchko Y., Bruniquel D. Cladribine inhibits cytokine secretion by T cells independently of deoxycytidine kinase activity. J. Neuroimmunol. 2011;240–241:52–57. doi: 10.1016/j.jneuroim.2011.09.010.
    1. Stampanoni Bassi M., Buttari F., Simonelli I., Gilio L., Furlan R., Finardi A., Marfia G.A., Visconti A., Paolillo A., Storto M., et al. A single nucleotide ADA genetic variant is associated to central inflammation and clinical presentation in MS: Implications for cladribine treatment. Genes. 2020;11:1152. doi: 10.3390/genes11101152.
    1. Samjoo I.A., Worthington E., Haltner A., Cameron C., Nicholas R., Rouyrre N., Dahlke F., Adlard N. Matching-adjusted indirect treatment comparison of siponimod and other disease modifying treatments in secondary progressive multiple sclerosis. Curr. Med. Res. Opin. 2020;36:1–10. doi: 10.1080/03007995.2020.1747999.
    1. Wu Q., Mills E.A., Wang Q., Dowling C.A., Fisher C., Kirch B., Lundy S.K., Fox D.A., Mao-Draayer Y., Group A.M.S.S. Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis. JCI Insight. 2020;5:e134251. doi: 10.1172/jci.insight.134251.
    1. Huth F., Gardin A., Umehara K., He H. Prediction of the impact of cytochrome P450 2C9 genotypes on the drug-drug interaction potential of siponimod with physiologically-based pharmacokinetic modeling: A comprehensive approach for drug label recommendations. Clin. Pharmacol. Ther. 2019;106:1113–1124. doi: 10.1002/cpt.1547.
    1. Jin Y., Borell H., Gardin A., Ufer M., Huth F., Camenisch G. In vitro studies and in silico predictions of fluconazole and CYP2C9 genetic polymorphism impact on siponimod metabolism and pharmacokinetics. Eur. J. Clin. Pharmacol. 2018;74:455–464. doi: 10.1007/s00228-017-2404-2.
    1. Hohlfeld R., Meinl E. Ocrelizumab in multiple sclerosis: Markers and mechanisms. Lancet. Neurol. 2017;16:259–261. doi: 10.1016/S1474-4422(17)30048-0.
    1. Sorensen P.S., Blinkenberg M. The potential role for ocrelizumab in the treatment of multiple sclerosis: Current evidence and future prospects. Ther. Adv. Neurol. Disord. 2016;9:44–52. doi: 10.1177/1756285615601933.
    1. Hauser S.L., Bar-Or A., Comi G., Giovannoni G., Hartung H.P., Hemmer B., Lublin F., Montalban X., Rammohan K.W., Selmaj K., et al. Ocrelizumab versus Interferon Beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 2017;376:221–234. doi: 10.1056/NEJMoa1601277.

Source: PubMed

3
Subscribe