Walking cadence (steps/min) and intensity in 41 to 60-year-old adults: the CADENCE-adults study

Catrine Tudor-Locke, Scott W Ducharme, Elroy J Aguiar, John M Schuna Jr, Tiago V Barreira, Christopher C Moore, Colleen J Chase, Zachary R Gould, Marcos A Amalbert-Birriel, Jose Mora-Gonzalez, Stuart R Chipkin, John Staudenmayer, Catrine Tudor-Locke, Scott W Ducharme, Elroy J Aguiar, John M Schuna Jr, Tiago V Barreira, Christopher C Moore, Colleen J Chase, Zachary R Gould, Marcos A Amalbert-Birriel, Jose Mora-Gonzalez, Stuart R Chipkin, John Staudenmayer

Abstract

Background: In younger adults (i.e., those < 40 years of age) a walking cadence of 100 steps/min is a consistently supported threshold indicative of absolutely-defined moderate intensity ambulation (i.e., ≥ 3 metabolic equivalents; METs). Less is known about the cadence-intensity relationship in adults of middle-age.

Purpose: To establish heuristic (i.e., evidence-based, practical, rounded) cadence thresholds for absolutely-defined moderate (3 METs) and vigorous (6 METs) intensity in adults 41 to 60 years of age.

Methods: In this cross-sectional study, 80 healthy adults of middle-age (10 men and 10 women representing each 5-year age-group between 41 to 60 years; body mass index = 26.0 ± 4.0 kg/m2) walked on a treadmill for 5-min bouts beginning at 0.5 mph and increasing in 0.5 mph increments. Performance termination criteria included: 1) transitioning to running, 2) reaching 75% of age-predicted maximum heart rate, or 3) reporting a Borg rating of perceived exertion > 13. Cadence was directly observed (i.e., hand tallied). Intensity (i.e., oxygen uptake [VO2] mL/kg/min) was assessed with an indirect calorimeter and converted to METs (1 MET = 3.5 mL/kg/min). A combination of segmented regression and Receiver Operating Characteristic (ROC) modeling approaches was used to identify optimal cadence thresholds. Final heuristic thresholds were determined based on an evaluation of classification accuracy (sensitivity, specificity, positive and negative predictive value, overall accuracy).

Results: The regression model identified 101.7 (95% Predictive Interval [PI]: 54.9-110.6) and 132.1 (95% PI: 122.0-142.2) steps/min as optimal cadence thresholds for 3 METs and 6 METs, respectively. Corresponding values based on ROC models were 98.5 (95% Confidence Intervals [CI]: 97.1-104.9) and 117.3 (95% CI: 113.1-126.1) steps/min. Considering both modeling approaches, the selected heuristic thresholds for moderate and vigorous intensity were 100 and 130 steps/min, respectively.

Conclusions: Consistent with our previous report in 21 to 40-year-old adults, cadence thresholds of 100 and 130 steps/min emerged as heuristic values associated with 3 and 6 METs, respectively, in 41 to 60-year-old adults. These values were selected based on their utility for public health messaging and on the trade-offs in classification accuracy parameters from both statistical methods. Findings will need to be confirmed in older adults and in free-living settings.

Keywords: Accelerometer; Exercise; Pedometer; Physical activity.

Conflict of interest statement

The authors declare they have no conflicts of interest. The results of the present study do not constitute endorsement by the American College of Sports Medicine. The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

Figures

Fig. 1
Fig. 1
Relationship between cadence and METs using a segmented regression model with random coefficients. Breakpoint is at 97.2 steps/min; marginal R2 = 0.81. Red line represents the mean MET values (y-axis) for each corresponding cadence value (x-axis), and the black lines represent the 95% Prediction Intervals. Blue horizontal dotted lines indicate moderate (3 METs) and vigorous (6 METs) intensity, respectively
Fig. 2
Fig. 2
Classification accuracy of heuristic cadence thresholds and MET intensities. A) ≥ 100 steps/min and ≥ 3 METs, B) ≥ 130 steps/min and ≥ 6 METs)

References

    1. Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79. doi: 10.1186/1479-5868-8-79.
    1. Tudor-Locke C, Han H, Aguiar EJ, et al. How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. Br J Sports Med. 2018;52(12):776–788. doi: 10.1136/bjsports-2017-097628.
    1. Physical Activity Guidelines Advisory Committee . 2018 physical activity guidelines advisory committee scientific report. Washington, DC: U.S. Department of Health and Human Services; 2018.
    1. Kraus WE, Janz KF, Powell KE, et al. Daily step counts for measuring physical activity exposure and its relation to health. Med Sci Sports Exerc. 2019;51(6):1206–1212. doi: 10.1249/MSS.0000000000001932.
    1. Bassett DR, Jr, Toth LP, LaMunion SR, Crouter SE. Step counting: a review of measurement considerations and health-related applications. Sports Med. 2017;47(7):1303–1315. doi: 10.1007/s40279-016-0663-1.
    1. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. doi: 10.1249/MSS.0b013e31821ece12.
    1. Abel M, Hannon J, Mullineaux D, Beighle A. Determination of step rate thresholds corresponding to physical activity intensity classifications in adults. J Phys Act Health. 2011;8(1):45–51. doi: 10.1123/jpah.8.1.45.
    1. Tudor-Locke C, Sisson SB, Collova T, Lee SM, Swan PD. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol. 2005;30(6):666–676. doi: 10.1139/h05-147.
    1. Beets MW, Agiovlasitis S, Fahs CA, Ranadive SM, Fernhall B. Adjusting step count recommendations for anthropometric variations in leg length. J Sci Med Sport. 2010;13(5):509–512. doi: 10.1016/j.jsams.2009.11.002.
    1. Rowe DA, Welk GJ, Heil DP, et al. Stride rate recommendations for moderate intensity walking. Med Sci Sports Exerc. 2011;43(2):312–318. doi: 10.1249/MSS.0b013e3181e9d99a.
    1. Marshall SJ, Levy SS, Tudor-Locke CE, et al. Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. Am J Prev Med. 2009;36(5):410–415. doi: 10.1016/j.amepre.2009.01.021.
    1. O’Brien MW, Kivell MJ, Wojcik WR, d’Entremont G, Kimmerly DS, Fowles JR. Step rate thresholds associated with moderate and vigorous physical activity in adults. Int J Environ Res Public Health. 2018;15(11):2454. doi: 10.3390/ijerph15112454.
    1. Tudor-Locke C, Aguiar EJ, Han H, et al. Walking cadence (steps/min) and intensity in 21-40 year olds: CADENCE-adults. Int J Behav Nutr Phys Act. 2019;16(1):8. doi: 10.1186/s12966-019-0769-6.
    1. Himann JE, Cunningham DA, Rechnitzer PA, Paterson DH. Age-related changes in speed of walking. Med Sci Sports Exerc. 1988;20(2):161–166. doi: 10.1249/00005768-198820020-00010.
    1. American College of Sports Medicine . ACSM's guidelines for exercise testing and prescription. 9. New York: Lippincott Williams & Wilkins; 2013.
    1. WHO Expert Committee on physical status: the use and interpretation of anthropometry . Physical status : the use and interpretation of anthropometry : report of a WHO expert committee. Geneva: World Health Organization; 1995.
    1. Rosdahl H, Gullstrand L, Salier-Eriksson J, Johansson P, Schantz P. Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. Eur J Appl Physiol. 2010;109(2):159–171. doi: 10.1007/s00421-009-1326-9.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Jette M, Sidney K, Blumchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990;13(8):555–565. doi: 10.1002/clc.4960130809.
    1. Zatsiorky VM, Werner SL, Kaimin MA. Basic kinematics of walking. Step length and step frequency. A review. J Sports Med Phys Fitness. 1994;34(2):109–134.
    1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.
    1. Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8(4):283–298. doi: 10.1016/S0001-2998(78)80014-2.
    1. Wang H, Zhang YF, Xu LL, Jiang CM. Step rate-determined walking intensity and walking recommendation in Chinese young adults: a cross-sectional study. BMJ Open. 2013;3(1):e001801. doi: 10.1136/bmjopen-2012-001801.
    1. Aguiar EJ, Gould ZR, Ducharme SW, Moore CC, McCullough AK, Tudor-Locke C. Cadence-based classification of minimally moderate intensity during Overground walking in 21- to 40-year-old adults. J Phys Act Health. 2019;16:1–6. doi: 10.1123/jpah.2019-0261.
    1. Ducharme SW, Sands CJ, Moore CC, Aguiar EJ, Hamill J, Tudor-Locke C. Changes to gait speed and the walk ratio with rhythmic auditory cuing. Gait Posture. 2018;66:255–259. doi: 10.1016/j.gaitpost.2018.09.006.
    1. Perry DC, Moore CC, Sands CJ, et al. Using music-based cadence entrainment to manipulate walking intensity. J Phys Act Health. 2019;16(11):1039–1046. doi: 10.1123/jpah.2019-0097.

Source: PubMed

3
Subscribe