Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections

Youenn Alexandre, Rozenn Le Berre, Georges Barbier, Gwenaelle Le Blay, Youenn Alexandre, Rozenn Le Berre, Georges Barbier, Gwenaelle Le Blay

Abstract

Background: Pseudomonas aeruginosa is an opportunistic pathogen that significantly increases morbidity and mortality in nosocomial infections and cystic fibrosis patients. Its pathogenicity especially relies on the production of virulence factors or resistances to many antibiotics. Since multiplication of antibiotic resistance can lead to therapeutic impasses, it becomes necessary to develop new tools for fighting P. aeruginosa infections. The use of probiotics is one of the ways currently being explored. Probiotics are microorganisms that exert a positive effect on the host's health and some of them are known to possess antibacterial activities. Since most of their effects have been shown in the digestive tract, experimental data compatible with the respiratory environment are strongly needed. The main goal of this study was then to test the capacity of lactobacilli to inhibit major virulence factors (elastolytic activity and biofilm formation) associated with P. aeruginosa pathogenicity.

Results: Sixty-seven lactobacilli were isolated from the oral cavities of healthy volunteers. These isolates together with 20 lactobacilli isolated from raw milks, were tested for their capacity to decrease biofilm formation and activity of the elastase produced by P. aeruginosa PAO1. Ten isolates, particularly efficient, were accurately identified using a polyphasic approach (API 50 CHL, mass-spectrometry and 16S/rpoA/pheS genes sequencing) and typed by pulsed-field gel electrophoresis (PFGE). The 8 remaining strains belonging to the L. fermentum (6), L. zeae (1) and L. paracasei (1) species were sensitive to all antibiotics tested with the exception of the intrinsic resistance to vancomycin. The strains were all able to grow in artificial saliva.

Conclusion: Eight strains belonging to L. fermentum, L. zeae and L. paracasei species harbouring anti-elastase and anti-biofilm properties are potential probiotics for fighting P. aeruginosa pulmonary infections. However, further studies are needed in order to test their innocuity and their capacity to behave such as an oropharyngeal barrier against Pseudomonas aeruginosa colonisation in vivo.

Figures

Figure 1
Figure 1
Flow-chart of the strains selection strategy.
Figure 2
Figure 2
Growth of selected strains in artificial saliva. Bacterial concentrations (log10 CFU/mL) of L. fermentum ES.A.2 (∆), ES.F.115 (○), K.C6.3.1D (▲), K.C6.3.1E (●), K.V9.3.2B (■), K.V9.3.2C (♦), L. zeae Od.76 (◊) and L. paracasei (□). Each value is the mean of three assays.
Figure 3
Figure 3
Acidification of the artificial saliva during the growth of selected strains. Acidifying properties of L. fermentum ES.A.2 (∆), ES.F.115 (○), K.C6.3.1D (▲), K.C6.3.1E (●), K.V9.3.2B (■), K.V9.3.2C (♦), L. zeae Od.76 (◊) and L. paracasei ES.D.88 (□) in artificial saliva. Each value is the mean of pH of three assays.

References

    1. Gaynes R, Edwards JR. Overview of nosocomial infections caused by Gram-negative bacilli. Clin Infect Dis. 2005;41:848–854.
    1. Fujitani S, Sun H-Y, Yu VL, Weingarten JA. Pneumonia due to Pseudomonas aeruginosa. Part I: epidemiology, clinical diagnosis, and source. Chest. 2011;139:909–919.
    1. Rajan S, Saiman L. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect. 2002;17:47–56.
    1. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171:1209–1223.
    1. Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Quenee L, Ader F, Lancel S, Courcol R, Guery BP, Faure K. Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia. Crit Care Med. 2011;39:2113–2120.
    1. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407:762–764.
    1. Guinane CM, Cotter PD. Role of gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol. 2013;6:295–308.
    1. Wang Z, Yang Y. Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol. 2013;19:1541–1550.
    1. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.
    1. Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci. 2005;113:188–196.
    1. Siempos II, Ntaidou TK, Falagas ME. Impact of the administration of probiotics on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. Crit Care Med. 2010;38:954–962.
    1. Hao Q, Lu Z, Dong BR, Huang CQ, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. 2011. p. CD006895.
    1. Delavenne E, Mounier J, Déniel F, Barbier G, Le Blay G. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. Int J Food Microbiol. 2012;155:185–190.
    1. Felis GE, Dellaglio F. Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol. 2007;8:44–61.
    1. Alakomi H-LL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol. 2000;66:2001–2005.
    1. Phillips I, Lobo AZ, Fernandes R, Gundara NS. Acetic acid in the treatment of superficial wounds infected by Pseudomonas aeruginosa. Lancet. 1968;1:11–14.
    1. Crouch Brewer S, Wunderink RG, Jones CB. Leeper K V: Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest. 1996;109:1019–1029.
    1. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151:1075–1082.
    1. Alexandre Y, Le Blay G, Boisramé-Gastrin S, Le Gall F, Héry-Arnaud G, Gouriou S, Vallet S, Le Berre R. Probiotics: a new way to fight bacterial pulmonary infections? Médecine Mal Infect. 2013;44:9–17.
    1. Petrof EO. Probiotics and gastrointestinal disease: clinical evidence and basic science. Antiinflamm Antiallergy Agents Med Chem. 2009;8:260–269.
    1. Barraud D, Blard C, Hein F, Marçon O, Cravoisy A, Nace L, Alla F, Bollaert P-E, Gibot S. Probiotics in the critically ill patient: a double blind, randomized, placebo-controlled trial. Intensive Care Med. 2010;36:1540–1547.
    1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–5017.
    1. Colloca M, Ahumada M, López M, Nader-Macías M. Surface properties of lactobacilli isolated from healthy subjects. Oral Dis. 2008;6:227–233.
    1. Teanpaisan R, Dahlén G. Use of polymerase chain reaction techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis for differentiation of oral Lactobacillus species. Oral Microbiol Immunol. 2006;21:79–83.
    1. Ahrné S, Nobaek S, Jeppsson B, Adlerberth I, Wold A, Molin G. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol. 1998;85:88–94.
    1. Dal Bello F, Hertel C. Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol. 2006;29:69–76.
    1. Maukonen J, Mättö J, Suihko M-L, Saarela M. Intra-individual diversity and similarity of salivary and faecal microbiota. J Med Microbiol. 2008;57:1560–1568.
    1. Caufield PW, Li Y, Dasanayake A, Saxena D. Diversity of lactobacilli in the oral cavities of young women with dental caries. Caries Res. 2007;41:2–8.
    1. Meurman JH, Stamatova I. Probiotics: contributions to oral health. Oral Dis. 2007;13:443–451.
    1. Kon Y, Tsukada H, Hasegawa T, Igarashi K, Wada K, Suzuki E, Arakawa M, Gejyo F. The role of Pseudomonas aeruginosa elastase as a potent inflammatory factor in a rat air pouch inflammation model. FEMS Immunol Med Microbiol. 1999;25:313–321.
    1. Azghani AO, Bedinghaus T, Klein R. Detection of elastase from Pseudomonas aeruginosa in sputum and its potential role in epithelial cell permeability. Lung. 2000;178:181–189.
    1. Rumbaugh KP, Griswold JA, Hamood AN. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2000;2:1721–1731.
    1. Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest. 2003;112:1460–1465.
    1. Montalto M, Vastola M, Marigo L, Covino M, Graziosetto R, Curigliano V, Santoro L, Cuoco L, Manna R, Gasbarrini G. Probiotic treatment increases salivary counts of lactobacilli: a double-blind, randomized, controlled study. Digestion. 2004;69:53–56.
    1. Danielsen M, Wind A. Susceptibility of Lactobacillus spp to antimicrobial agents. Int J Food Microbiol. 2003;82:1–11.
    1. Holloway BW. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955;13:572–581.
    1. Hartemink R, Domenech V, Rombouts F. LAMVAB—A new selective medium for the isolation of lactobacilli from faeces. J Microbiol Methods. 1997;29:77–84.
    1. Héry-Arnaud G, Rouzic N, Doloy A, Le Lay G, Garré M, Payan C, Poyart C. Streptococcus australis meningitis. J Med Microbiol. 2011;60:1701–1704.
    1. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology. 2005;151:2141–2150.
    1. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739.
    1. Delavenne E, Ismail R, Pawtowski A, Mounier J, Barbier G, Le Blay G. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control. 2013;30:206–213.
    1. Merritt JH, Kadouri DE, O’Toole GA, Toole GAO. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005;00:1B.1.1–1B.1.17.
    1. Valdéz JC, Peral MC, Rachid M, Santana M, Perdigón G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect. 2005;11:472–479.
    1. Rust L, Messing CR, Iglewski BH. Elastase assays. Methods Enzymol. 1994;235:554–562.
    1. Soussy CJ, Bonnet R, Caron F, Cavallo JD, Chardon H, Chidiac C, Courvalin P, Drugeon H, Dubreuil L, Jarlier V, Jehl F, Lambert T, Leclercq R, Nicolas-Chanoine MH, Plesiat P, Ploy MC, Quentin C, Varon E, Weber P. Comité de l’antibiogramme de la société française de microbiologie. Recommandations. 2012;2012:59p.
    1. Roger P, Delettre J, Bouix M, Béal C. Characterization of Streptococcus salivarius growth and maintenance in artificial saliva. J Appl Microbiol. 2011;111:631–641.

Source: PubMed

3
Subscribe