Peripherally Induced Reconditioning of the Central Nervous System: A Proposed Mechanistic Theory for Sustained Relief of Chronic Pain with Percutaneous Peripheral Nerve Stimulation

Timothy R Deer, Sam Eldabe, Steven M Falowski, Marc A Huntoon, Peter S Staats, Isaac R Cassar, Nathan D Crosby, Joseph W Boggs, Timothy R Deer, Sam Eldabe, Steven M Falowski, Marc A Huntoon, Peter S Staats, Isaac R Cassar, Nathan D Crosby, Joseph W Boggs

Abstract

Peripheral nerve stimulation (PNS) is an effective tool for the treatment of chronic pain, although its efficacy and utilization have previously been significantly limited by technology. In recent years, purpose-built percutaneous PNS devices have been developed to overcome the limitations of conventional permanently implanted neurostimulation devices. Recent clinical evidence suggests clinically significant and sustained reductions in pain can persist well beyond the PNS treatment period, outcomes that have not previously been observed with conventional permanently implanted neurostimulation devices. This narrative review summarizes mechanistic processes that contribute to chronic pain, and the potential mechanisms by which selective large diameter afferent fiber activation may reverse these changes to induce a prolonged reduction in pain. The interplay of these mechanisms, supported by data in chronic pain states that have been effectively treated with percutaneous PNS, will also be discussed in support of a new theory of pain management in neuromodulation: Peripherally Induced Reconditioning of the Central Nervous System (CNS).

Keywords: chronic pain; cortical plasticity; mechanism of action; neuromodulation; peripheral nerve stimulation; peripherally induced reconditioning.

Conflict of interest statement

TRD has consulted for Abbott, Axonics, Cornerloc, Ethos, Flowonix, Nalu, Saluda, SpineThera, Stimgenics, SI Bone, Medtronic, PainTeq, Vertiflex (Boston Scientific), Nevro, Vertos, and SPR Therapeutics. He has received research support from Vertiflex, Vertos, Abbott, Mainstay, Saluda, SPR Therapeutics. He holds minor equity in Bioness, Cornerloc, Ethos, Vertiflex, Vertos, Nalu, SpineThera, Saluda, and SPR Therapeutics. SE has consulted for Medtronic, Inc, Mainstay Medical, Boston Scientific Corp, Saluda, and Abbott. He has received research support from the National Institute of Health Research, Medtronic, Inc, and Nevro Corp. SMF has consulted for Abbott, Medtronic, Nevro, Saluda Medical, SPR Therapeutics, and Vertiflex (Boston Scientific). He has received research support from Abbott, Biotronik, Medtronic, Nuvectra, and Saluda Medical. He holds stock options in SpineThera, SPR Therapeutics, Stimgenics, Cornerloc, and Thermaquil, and has equity interest in Saluda Medical. MAH has consulted for SPR, Saluda and Mainstay Medical. PSS has consulted for Abbott, Nevro, Medtronic, and SPR Therapeutics. He has received research support from Boston Scientific, Abbott, Vertos, Nevro, Saluda and Grunenthal Halyard. He is in the Clinical Advisory Board for AIS Therapeutics. He has stock or equity interest in SPR Therapeutics, Nalu and electroCore. IRC, NDC, and JWB are employees of SPR Therapeutics. NDC and JWB report systems and methods for sustained relief of chronic pain patent pending. The authors report no other conflicts of interest in this work.

© 2021 Deer et al.

Figures

Figure 1
Figure 1
Two percutaneous PNS approaches have demonstrated sustained relief of chronic pain. Stimulation is delivered from a system with open-coiled leads designed to be placed remote from the nerve to selectively activate Aα/β fibers while avoiding Aδ/C fiber activation (ie, remote selective targeting). The activation zones are shown for Aα/β fibers (blue) and Aδ/C fibers (orange). (A) Stimulation of mixed nerves at 100 Hz (1) can selectively activate the largest sensory afferents (many of which are larger than muscle efferents147). (2) Stimulation activates the large diameter muscle and tactile afferents while avoiding activation of muscle efferents and nociceptive afferents. (3) Directly induced large diameter afferent action potentials enter the spinal dorsal horn at the rate of the stimulation frequency (100 Hz) to engage the gating mechanism, typically producing comfortable sensations in the innervated region. (B) Stimulation of mixed nerves at 12 Hz (1) at a sufficient intensity can also activate muscle efferent fibers. (2) Stimulation activates large diameter fibers, including cutaneous afferents, muscle afferents, and muscle efferents while avoiding nociceptive afferents. (3) Orthodromic firing of muscle efferents causes muscle contraction, generating physiological activation of muscle afferent fibers. (4) Large diameter afferent action potentials (directly induced by stimulation and indirectly through muscle contraction) enter the spinal dorsal horn to collectively engage the gating mechanism.
Figure 2
Figure 2
Pain circuitry in the spinal dorsal horn. Four primary sub-circuits are represented: (1) post-synaptic inhibition of nociceptive projection neurons, (2) pre-synaptic inhibition of nociceptive projection neurons, (3) basally inhibited PKCγ excitatory interneurons, and (4) polysynaptically excited nociceptive projection neurons. (A) In a healthy case there is a balance between nociceptive and non-nociceptive afferent input and dorsal horn circuit strengths, resulting in minimal activation of nociceptive projection neurons. (B) In the case of chronic pain, peripheral nerve damage/inflammation elevates firing of nociceptive afferent fibers. Additionally, GABAergic and glycinergic drive from inhibitory interneurons are reduced, resulting in: (1) reduction in post-synaptic inhibition, (2) reduction in pre-synaptic inhibition, (3) disinhibition of PKCγ interneurons, enabling allodynia-producing circuits, and (4) sensitization of nociceptive projection neurons, characterized by increased excitability and decreased inhibition. (C) Neurostimulation is believed to cause elevated firing of Aα/β afferent fibers, counteracting many of the circuit-level effects of chronic pain. Specifically, high rates of Aα/β firing induce: (1) elevated post-synaptic inhibition, (2) elevated pre-synaptic inhibition (3) return of inhibition to the PKCγ cells, reducing allodynia, and (4) elevated inhibition and reduction of nociceptive drive to the nociceptive projection neurons.
Figure 3
Figure 3
Remote selective targeting promotes activation of large diameter fibers while avoiding activation of small diameter fibers using PNS systems and open coil leads designed for placement distant to the nerve. Large diameter fibers have lower activation thresholds than smaller diameter fibers, and thresholds also increase with electrode-to-fiber distance. The activation zones are shown for Aα/β fibers (blue) and Aδ/C fibers (orange). (A) For a conventional PNS electrode placed intimate to the nerve, a limited number of Aα/β fibers may be activated. (B) Increasing the intensity to activate a larger proportion of Aα/β fibers begins to concurrently activate Aδ/C fibers or motor fibers, causing unintended discomfort. (C) A system using a percutaneous open-coil electrode placed remotely from the nerve (eg, 0.5–3 cm) is designed to selectively activate a larger proportion of Aα/β fibers without concomitant activation of Aδ/C fibers.
Figure 4
Figure 4
Varying degrees of cortical activation using different stimulation methods. Optimal induction of cortical remapping requires selective activation of a large number of afferent fibers (ie, robust activation) that is generated focally (ie, from the region of pain). The activation zones are shown for Aα/β fibers (blue) and Aδ/C fibers (orange). (A) SCS activates a small number of fibers in the superficial dorsal column before reaching discomfort thresholds due to dorsal root activation, and the dorsal column fibers it does activate are commonly spread across multiple dermatomes. The afferent input to S1 is thus neither robust nor focal. Conventional DRGS (B) or PNS (C) can more focally target the dermatome and/or nerve innervating the specific region of pain, though DRGS often involves multi-level stimulation, but limitations with conventional systems and stimulation strategies curb the degree of large diameter fiber activation before reaching discomfort thresholds due to small diameter nociceptor activation. The afferent input to S1 is thus more focal than SCS but not robust. (D) Percutaneous PNS with remote selective targeting enables both focal and robust activation of the target nerves, potentially resulting in optimal cortical input to induce activity-dependent remapping and sustained analgesia, facilitating reconditioning of the CNS.

References

    1. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–979. doi:10.1126/science.150.3699.971
    1. Wall PD, Sweet WH. Temporary abolition of pain in man. Science. 1967;155:108–109. doi:10.1126/science.155.3758.108
    1. Gildenberg PL. History of electrical neuromodulation for chronic pain. Pain Med. 2006;7:S7–S13. doi:10.1111/j.1526-4637.2006.00118.x
    1. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–491. doi:10.1213/00000539-196707000-00025
    1. Kumar K, Rizvi S. Historical and present state of neuromodulation in chronic pain. Curr Pain Headache Rep. 2013;18:387. doi:10.1007/s11916-013-0387-y
    1. Cavuoto J. The birth of an industry. In: Krames ES, Peckham PH, Rezai AR, editors. Neuromodulation. San Diego: Academic Press; 2018:1665–1674.
    1. North RB, Prager JP. History of spinal cord stimulation. In: Krames ES, Peckham PH, Rezai AR, editors. Neuromodulation. San Diego: Academic Press; 2018:587–596.
    1. Stanton-Hicks M. Peripheral nerve stimulation for pain peripheral neuralgia and complex regional pain syndrome. In: Krames ES, Peckham PH, Rezai AR, editors. Neuromodulation. San Diego: Academic Press; 2009:397–407.
    1. Slavin KV. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics. 2008;5:100–106. doi:10.1016/j.nurt.2007.11.005
    1. Boggs JW, Chae J, Bennett ME. Peripheral nerve stimulation for pain suppression. In: Krames ES, Peckham PH, Rezai AR, editors. Neuromodulation. San Diego: Academic Press; 2018:729–740.
    1. Campbell JN, Long DM. Peripheral nerve stimulation in the treatment of intractable pain. J Neurosurg. 1976;45:692–699. doi:10.3171/jns.1976.45.6.0692
    1. Nashold BS, Goldner JL, Mullen JB, et al. Long-term pain control by direct peripheral-nerve stimulation. J Bone Joint Surg Am. 1982;64:1–10. doi:10.2106/00004623-198264010-00001
    1. Hassenbusch SJ, Stanton-Hicks M, Schoppa D, et al. Long-term results of peripheral nerve stimulation for reflex sympathetic dystrophy. J Neurosurg. 1996;84:415. doi:10.3171/jns.1996.84.3.0415
    1. Novak CB, Mackinnon SE. Outcome following implantation of a peripheral nerve stimulator in patients with chronic nerve pain. Plast Reconstr Surg. 2000;105:1967–1972. doi:10.1097/00006534-200005000-00008
    1. Eisenberg E, Waisbrod H, Gerbershagen HU. Long-term peripheral nerve stimulation for painful nerve injuries. Clin J Pain. 2004;20:143–146. doi:10.1097/00002508-200405000-00003
    1. Mobbs RJ, Nair S, Blum P. Peripheral nerve stimulation for the treatment of chronic pain. J Clin Neurosci. 2007;14:216–221. doi:10.1016/j.jocn.2005.11.007
    1. Huntoon MA, Burgher AH. Ultrasound-guided permanent implantation of peripheral nerve stimulation (PNS) system for neuropathic pain of the extremities: original cases and outcomes. Pain Med. 2009;10:1369–1377. doi:10.1111/j.1526-4637.2009.00745.x
    1. Deer T, Pope J, Benyamin R, et al. Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin. Neuromodulation. 2016;19:91–100. doi:10.1111/ner.12381
    1. Mirone G, Natale M, Rotondo M. Peripheral median nerve stimulation for the treatment of iatrogenic complex regional pain syndrome (CRPS) type II after carpal tunnel surgery. J Clin Neurosci. 2009;16:825–827. doi:10.1016/j.jocn.2008.09.006
    1. Dunteman E. Peripheral nerve stimulation for unremitting ophthalmic postherpetic neuralgia. Neuromodulation. 2002;5:32–37. doi:10.1046/j.1525-1403.2002._2006.x
    1. Johnson MD, Burchiel KJ. Peripheral stimulation for treatment of trigeminal postherpetic neuralgia and trigeminal posttraumatic neuropathic pain: a pilot study. Neurosurgery. 2004;55:135–142. doi:10.1227/01.NEU.0000126874.08468.89
    1. Ordia J, Vaisman J. Subcutaneous peripheral nerve stimulation with paddle lead for treatment of low back pain: case report. Neuromodulation. 2009;12:205–209. doi:10.1111/j.1525-1403.2009.00215.x
    1. Burgher AH, Huntoon MA, Turley TW, et al. Subcutaneous peripheral nerve stimulation with inter-lead stimulation for axial neck and low back pain: case series and review of the literature. Neuromodulation. 2012;15:100–107. doi:10.1111/j.1525-1403.2011.00388.x
    1. Hegarty D, Goroszeniuk T. Peripheral nerve stimulation of the thoracic paravertebral plexus for chronic neuropathic pain. Pain Physician. 2011;14:295–300.
    1. Stidd DA, Wuollet A, Kirk Bowden D, et al. Peripheral nerve stimulation for trigeminal neuropathic pain. Pain Physician. 2012;15:27–33. doi:10.36076/ppj.2012/15/27
    1. Giorgio Lambru M, Paul Shanahan M. Occipital nerve stimulation in the treatment of medically intractable SUNCT and SUNA. Pain Physician. 2014;17:29–41.
    1. Guentchev M, Preuss C, Rink R, et al. Long-term reduction of sacroiliac joint pain with peripheral nerve stimulation. Oper Neurosurg. 2017;13:634–639. doi:10.1093/ons/opx017
    1. Goroszeniuk T. The effect of peripheral neuromodulation on pain from the sacroiliac joint: a retrospective cohort study. Neuromodulation. 2018. doi:10.1111/ner.12803
    1. Silberstein SD, Dodick DW, Saper J, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia. 2012;32:1165–1179. doi:10.1177/0333102412462642
    1. Yakovlev AE, Peterson AT. Peripheral nerve stimulation in treatment of intractable postherpetic neuralgia. Neuromodulation. 2007;10:373–375. doi:10.1111/j.1525-1403.2007.00126.x
    1. Ilfeld BM, Ball ST, Gabriel RA, et al. A feasibility study of percutaneous peripheral nerve stimulation for the treatment of postoperative pain following total knee arthroplasty. Neuromodulation. 2019;22:653–660. doi:10.1111/ner.12790
    1. Wilson RD, Harris MA, Gunzler DD, et al. Percutaneous peripheral nerve stimulation for chronic pain in subacromial impingement syndrome: a case series. Neuromodulation. 2014;17:771–776; discussion 776. doi:10.1111/ner.12152
    1. Petersen EA, Slavin KV. Peripheral nerve/field stimulation for chronic pain. Neurosurg Clin. 2014;25:789–797. doi:10.1016/j.nec.2014.07.003
    1. Mobbs RJ, Blum P, Rossato R. Mesh electrode for peripheral nerve stimulation. J Clin Neurosci. 2003;10:476–477. doi:10.1016/S0967-5868(03)00090-0
    1. Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation. 1999;2:217–221. doi:10.1046/j.1525-1403.1999.00217.x
    1. Corriveau M, Lake W, Hanna A. Nerve Stimulation for Pain. Neurosurg Clin N Am. 2019;30:257–264. doi:10.1016/j.nec.2018.12.008
    1. de Leon-casasola OA. Spinal cord and peripheral nerve stimulation techniques for neuropathic pain. J Pain Symptom Manage. 2009;38:S28–S38. doi:10.1016/j.jpainsymman.2009.05.005
    1. Kele H. Ultrasonography of the peripheral nervous system. Perspect Med. 2012;1:417–421. doi:10.1016/j.permed.2012.02.047
    1. Gilmore CA, Ilfeld BM, Rosenow JM, et al. Percutaneous 60-day peripheral nerve stimulation implant provides sustained relief of chronic pain following amputation: 12-month follow-up of a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2020;45:44–51. doi:10.1136/rapm-2019-100937
    1. Gilmore CA, Kapural L, McGee MJ, et al. Percutaneous peripheral nerve stimulation for chronic low back pain: prospective case series with 1 year of sustained relief following short-term implant. Pain Pract. 2020;20:310–320. doi:10.1111/papr.12856
    1. Ilfeld BM, Gabriel RA, Saulino MF, et al. Infection rates of electrical leads used for percutaneous neurostimulation of the peripheral nervous system. Pain Pract. 2017;17:753–762. doi:10.1111/papr.12523
    1. Caldwell CW, Reswick JB. A percutaneous wire electrode for chronic research use. IEEE Trans Biomed Eng. 1975;BME-22:429–432. doi:10.1109/TBME.1975.324516
    1. Marsolais E, Kobetic R. Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities. J Rehabil Res Dev. 1986;23:1–8.
    1. Memberg WD, Peckham PH, Thrope G, et al. An analysis of the reliability of percutaneous intramuscular electrodes in upper extremity FNS applications. IEEE Trans Rehabil Eng. 1993;1:126–132. doi:10.1109/86.242426
    1. Shimada Y, Sato K, Kagaya H, et al. Clinical use of percutaneous intramuscular electrodes for functional electrical stimulation. Arch Phys Med Rehabil. 1996;77:1014–1018. doi:10.1016/S0003-9993(96)90061-1
    1. Knutson J, Naples G, Peckham PH, et al. Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications. J Rehabil R D. 2002;39:671.
    1. Onders RP, Elmo M, Khansarinia S, et al. Complete worldwide operative experience in laparoscopic diaphragm pacing: results and differences in spinal cord injured patients and amyotrophic lateral sclerosis patients. Surg Endosc. 2009;23:1433–1440. doi:10.1007/s00464-008-0223-3
    1. Peckham PH, Knutson JS. Functional Electrical Stimulation for Neuromuscular Applications. Annu Rev Biomed Eng. 2005;7:327–360. doi:10.1146/annurev.bioeng.6.040803.140103
    1. Mortimer JT, Bhadra N. Peripheral nerve and muscle stimulation. In: Horch KW and Dhillon GS, eds. Neuroprosthetics: Theory and Practice. World Scientific; 2004:638–682.
    1. Bhadra N, Mortimer JT. Extraction forces and tissue changes during explant of CWRU-type intramuscular electrodes from rat gastrocnemius. Ann Biomed Eng. 1997;25:1017–1025. doi:10.1007/BF02684137
    1. Bhadra N, Mortimer JT. Extraction force and tissue change during removal of a tined intramuscular electrode from rat gastrocnemius. Ann Biomed Eng. 2006;34:1042–1050. doi:10.1007/s10439-006-9125-5
    1. Akers JM, Peckham PH, Keith MW, et al. Tissue response to chronically stimulated implanted epimysial and intramuscular electrodes. IEEE Trans Rehabil Eng. 1997;5:207–220. doi:10.1109/86.593301
    1. Rauck RL, Kapural L, Cohen SP, et al. Peripheral nerve stimulation for the treatment of postamputation pain–a case report. Pain Pract. 2012;12:649–655. doi:10.1111/j.1533-2500.2012.00552.x
    1. Rauck RL, Cohen SP, Gilmore CA, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation. 2013;17:188–197. doi:10.1111/ner.12102
    1. Gilmore CA, Ilfeld BM, Rosenow J, et al. Percutaneous peripheral nerve stimulation for the treatment of chronic neuropathic postamputation pain: a multicenter, randomized, placebo-controlled trial. Reg Anesth Pain Med. 2019;44:637–645. doi:10.1136/rapm-2018-100109
    1. Rosenow JM, Gilmore C, Ilfeld BM, et al. One year follow-up of a randomized, double-blind, placebo-controlled trial of percutaneous peripheral nerve stimulation for chronic neuropathic pain following amputation. Neurosurgery. 2019;66. doi:10.1093/neuros/nyz310_144
    1. Ilfeld BM, Grant SA, Gilmore CA, et al. Neurostimulation for postsurgical analgesia: a novel system enabling ultrasound-guided percutaneous peripheral nerve stimulation. Pain Pract. 2016;17:892–901. doi:10.1111/papr.12539
    1. Ilfeld BM, Gilmore CA, Grant SA, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. J Orthop Surg Res. 2017;12:4. doi:10.1186/s13018-016-0506-7
    1. Ilfeld BM, Finneran JJ, Gabriel RA, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the suprascapular nerve and brachial plexus for postoperative analgesia following ambulatory rotator cuff repair. A proof-of-concept study. Reg Anesth Pain Med. 2019;44:310–318. doi:10.1136/rapm-2018-100121
    1. Ilfeld BM, Gabriel RA, Said ET, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the sciatic nerve for postoperative analgesia following ambulatory foot surgery, a proof-of-concept study. Reg Anesth Pain Med. 2018;43:580–589. doi:10.1097/AAP.0000000000000819
    1. Ilfeld BM, Said ET, Finneran J, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the femoral nerve for postoperative analgesia following ambulatory anterior cruciate ligament reconstruction: a proof of concept study. Neuromodulation. 2019;22:621–629. doi:10.1111/ner.12851
    1. Wilson RD, Bennett ME, Lechman TE, et al. Single-lead percutaneous peripheral nerve stimulation for the treatment of hemiplegic shoulder pain: a case report. Arch Phys Med Rehabil. 2011;92:837–840. doi:10.1016/j.apmr.2010.11.003
    1. Chae J, Wilson RD, Bennett ME, et al. Single-lead percutaneous peripheral nerve stimulation for the treatment of hemiplegic shoulder pain: a case series. Pain Pract. 2013;13:59–67. doi:10.1111/j.1533-2500.2012.00541.x
    1. Wilson RD, Gunzler DD, Bennett ME, et al. Peripheral nerve stimulation compared with usual care for pain relief of hemiplegic shoulder pain: a randomized controlled trial. Am J Phys Med Rehabil. 2014;93:17–28. doi:10.1097/PHM.0000000000000011
    1. Nguyen VQ, Bock WC, Groves CC, et al. Fully implantable peripheral nerve stimulation for the treatment of hemiplegic shoulder pain: a case report. Am J Phys Med Rehabil. 2015;94:146–153. doi:10.1097/PHM.0000000000000173
    1. Wilson RD, Bennett ME, Nguyen VQC, et al. Fully implantable peripheral nerve stimulation for hemiplegic shoulder pain: a multi-site case series with two-year follow-up. Neuromodulation. 2018;21:290–295. doi:10.1111/ner.12726
    1. Gilmore CA, Kapural L, McGee MJ, et al. Percutaneous peripheral nerve stimulation (PNS) for the treatment of chronic low back pain provides sustained relief. Neuromodulation. 2018.
    1. Kapural L, Gilmore CA, Chae J, et al. Percutaneous peripheral nerve stimulation for the treatment of chronic low back pain: two clinical case reports of sustained pain relief. Pain Pract. 2018;18:94–103. doi:10.1111/papr.12571
    1. Ilfeld BM, Grant SA. Ultrasound-guided percutaneous peripheral nerve stimulation for postoperative analgesia: could neurostimulation replace continuous peripheral nerve blocks? Reg Anesth Pain Med. 2016;41:720–722. doi:10.1097/AAP.0000000000000481
    1. Guan Y, Wacnik PW, Yang F, et al. Spinal cord stimulation-induced analgesiaelectrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology. 2010;113:1392–1405. doi:10.1097/ALN.0b013e3181fcd95c
    1. Sun L, Tai L, Qiu Q, et al. Endocannabinoid activation of CB1 receptors contributes to long-lasting reversal of neuropathic pain by repetitive spinal cord stimulation. Eur J Pain. 2017;21:804–814. doi:10.1002/ejp.983
    1. Meyerson B, Ren B, Herregodts P, et al. Spinal cord stimulation in animal models of mononeuropathy: effects on the withdrawal response and the flexor reflex. Pain. 1995;61:229–243. doi:10.1016/0304-3959(94)00171-A
    1. Lindblom U, Meyerson B. Influence on touch, vibration and cutaneous pain of dorsal column stimulation in man. Pain. 1975;1:257–270. doi:10.1016/0304-3959(75)90042-1
    1. Wolter T, Winkelmuller M. Continuous versus intermittent spinal cord stimulation: an analysis of factors influencing clinical efficacy. Neuromodulation. 2012;15:13–19; discussion 20. doi:10.1111/j.1525-1403.2011.00410.x
    1. Deer TR, Naidu R, Strand N, et al. A review of the bioelectronic implications of stimulation of the peripheral nervous system for chronic pain conditions. Bioelectron Med. 2020;6:9. doi:10.1186/s42234-020-00045-5
    1. Deer TR, Esposito MF, McRoberts WP, et al. A systematic literature review of peripheral nerve stimulation therapies for the treatment of pain. Pain Med. 2020;21:1590–1603. doi:10.1093/pm/pnaa030
    1. Basbaum AI, Kandel ER, Schwartz JH, et al. Pain. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science (Ed 5). New York: McGraw-hill; 2000.
    1. Bentley N, Awad AJ, Patil PG. Physiology and pathophysiology of chronic pain. In: Krames ES, Peckham PH, Rezai AR, editors. Neuromodulation. San Diego: Academic Press; 2018:565–573.
    1. Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–284. doi:10.1016/j.cell.2009.09.028
    1. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52:77–92. doi:10.1016/j.neuron.2006.09.021
    1. Gracely RH, Lynch SA, Bennett GJ. Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain. 1992;51:175–194. doi:10.1016/0304-3959(92)90259-E
    1. Haroutounian S, Nikolajsen L, Bendtsen TF, et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain. 2014;155:1272–1279. doi:10.1016/j.pain.2014.03.022
    1. Treede RD. Gain control mechanisms in the nociceptive system. Pain. 2016;157:1199–1204. doi:10.1097/j.pain.0000000000000499
    1. Meacham K, Shepherd A, Mohapatra DP, et al. Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep. 2017;21:28. doi:10.1007/s11916-017-0629-5
    1. Cervero F. Spinal cord hyperexcitability and its role in pain and hyperalgesia. Exp Brain Res. 2009;196:129–137. doi:10.1007/s00221-009-1789-2
    1. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926. doi:10.1016/j.jpain.2009.06.012
    1. Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18:20–30. doi:10.1038/nrn.2016.162
    1. Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21:570–579. doi:10.1097/ACO.0b013e32830edbdf
    1. Watkins LR, Milligan ED, Maier SF. Spinal cord glia: new players in pain. Pain. 2001;93:201–205. doi:10.1016/S0304-3959(01)00359-1
    1. Ruiz-Sauri A, Orduña‐Valls JM, Blasco-Serra A, et al. Glia to neuron ratio in the posterior aspect of the human spinal cord at thoracic segments relevant to spinal cord stimulation. J Anat. 2019;235:997–1006. doi:10.1111/joa.13061
    1. Vallejo R, Kelley CA, Gupta A, et al. Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920918057. doi:10.1177/1744806920918057
    1. Braz J, Solorzano C, Wang X, et al. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron. 2014;82:522–536. doi:10.1016/j.neuron.2014.01.018
    1. Neumann S, Braz JM, Skinner K, et al. Innocuous, not noxious, input activates PKCγ interneurons of the spinal dorsal horn via myelinated afferent fibers. J Neurosci. 2008;28:7936–7944. doi:10.1523/JNEUROSCI.1259-08.2008
    1. Takazawa T, MacDermott AB. Synaptic pathways and inhibitory gates in the spinal cord dorsal horn. Ann N Y Acad Sci. 2010;1198:153–158. doi:10.1111/j.1749-6632.2010.05501.x
    1. Malmberg AB, Chen C, Tonegawa S, et al. Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science. 1997;278:279–283. doi:10.1126/science.278.5336.279
    1. Lu Y, Dong H, Gao Y, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest. 2013;123:4050–4062. doi:10.1172/JCI70026
    1. Chen Q, Heinricher MM. Descending control mechanisms and chronic pain. Curr Rheumatol Rep. 2019;21:13. doi:10.1007/s11926-019-0813-1
    1. Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89:707–758. doi:10.1152/physrev.00025.2008
    1. Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci. 2012;35:629–637. doi:10.1016/j.tins.2012.06.002
    1. Treede R-D, Kenshalo DR, Gracely RH, et al. The cortical representation of pain. Pain. 1999;79:105–111. doi:10.1016/S0304-3959(98)00184-5
    1. Flor H, Braun C, Elbert T, et al. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett. 1997;224:5–8. doi:10.1016/S0304-3940(97)13441-3
    1. Maihöfner C, Handwerker HO, Neundörfer B, et al. Patterns of cortical reorganization in complex regional pain syndrome. Neurology. 2003;61:1707–1715. doi:10.1212/01.WNL.0000098939.02752.8E
    1. Birbaumer N, Lutzenberger W, Montoya P, et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci. 1997;17:5503–5508. doi:10.1523/JNEUROSCI.17-14-05503.1997
    1. Flor H. The modification of cortical reorganization and chronic pain by sensory feedback. Appl Psychophysiol Biofeedback. 2002;27:215–227. doi:10.1023/A:1016204029162
    1. Pleger B, Tegenthoff M, Schwenkreis P, et al. Mean sustained pain levels are linked to hemispherical side-to-side differences of primary somatosensory cortex in the complex regional pain syndrome I. Exp Brain Res. 2004;155:115–119. doi:10.1007/s00221-003-1738-4
    1. Vartiainen N, Kirveskari E, Kallio-Laine K, et al. Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. J Pain. 2009;10:854–859. doi:10.1016/j.jpain.2009.02.006
    1. Moseley GL, Flor H. Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair. 2012;26:646–652. doi:10.1177/1545968311433209
    1. Daniele CA, MacDermott AB. Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. J Neurosci. 2009;29:686–695. doi:10.1523/JNEUROSCI.5120-08.2009
    1. Djouhri L, Lawson SN. Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Rev. 2004;46:131–145. doi:10.1016/j.brainresrev.2004.07.015
    1. Seburn KL, Catlin PA, Dixon JF, et al. Decline in spontaneous activity of group Aαβ sensory afferents after sciatic nerve axotomy in rat. Neurosci Lett. 1999;274:41–44. doi:10.1016/S0304-3940(99)00667-9
    1. Burgess P, Petit D, Warren RM. Receptor types in cat hairy skin supplied by myelinated fibers. J Neurophysiol. 1968;31:833–848. doi:10.1152/jn.1968.31.6.833
    1. Yang F, Xu Q, Cheong YK, et al. Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain. 2014;18:978–988. doi:10.1002/j.1532-2149.2013.00443.x
    1. Gilman S. Joint position sense and vibration sense: anatomical organisation and assessment. J Neurol Neurosurg Psychiatry. 2002;73:473–477. doi:10.1136/jnnp.73.5.473
    1. Gardner E, Johnson K. The somatosensory system: receptors and central pathways. Principles Neural Sci. 2013;5:475–495.
    1. Parker JL, Shariati NH, Karantonis DM. Electrically evoked compound action potential recording in peripheral nerves. Bioelectron Med. 2018;1:71–83. doi:10.2217/bem-2017-0005
    1. Li CL, Bak A. Excitability characteristics of the A- and C-fibers in a peripheral nerve. Exp Neurol. 1976;50:67–79. doi:10.1016/0014-4886(76)90236-3
    1. Linderoth B, Foreman RD. Physiology of spinal cord stimulation: review and update. Neuromodulation. 1999;2:150–164. doi:10.1046/j.1525-1403.1999.00150.x
    1. Hillman P, Wall P. Inhibitory and excitatory factors influencing the receptive fields of lamina 5 spinal cord cells. Exp Brain Res. 1969;9:284–306. doi:10.1007/BF00235240
    1. Foreman R, Beall J, Coulter J, et al. Effects of dorsal column stimulation on primate spinothalamic tract neurons. J Neurophysiol. 1976;39:534–546. doi:10.1152/jn.1976.39.3.534
    1. Chung J, Fang Z, Hori Y, et al. Prolonged inhibition of primate spinothalamic tract cells by peripheral nerve stimulation. Pain. 1984;19:259–275. doi:10.1016/0304-3959(84)90004-6
    1. Guan Y, Bradley K, Parker JL, et al. Spinal cord stimulation: mechamisms of action. In: Krames ES, Peckham PH, Rezai AR, eds. Neuromodulation. Cambridge, MA: Academic Press; 2018:161–178.
    1. Yang F, Xu Q, Shu B, et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Abeta-fiber stimulation. Pain. 2016;157:2582–2593. doi:10.1097/j.pain.0000000000000680
    1. Sdrulla AD, Xu Q, He SQ, et al. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain. 2015;156:1008–1017. doi:10.1097/01.j.pain.0000460353.15460.a3
    1. Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience. 2014;283:95–106. doi:10.1016/j.neuroscience.2014.09.032
    1. Mendell LM. Constructing and deconstructing the gate theory of pain. Pain. 2014;155:210–216. doi:10.1016/j.pain.2013.12.010
    1. Wall PD. Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol. 1958;142:1–21. doi:10.1113/jphysiol.1958.sp005997
    1. Eccles JC, Krnjević K. Potential changes recorded inside primary afferent fibres within the spinal cord. J Physiol. 1959;149:250–273. doi:10.1113/jphysiol.1959.sp006338
    1. Willis WD Jr. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res. 1999;124:395–421. doi:10.1007/s002210050637
    1. Rudomin P, Schmidt RF. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res. 1999;129:1–37. doi:10.1007/s002210050933
    1. Cervero F, Laird JMA, García-Nicas E. Secondary hyperalgesia and presynaptic inhibition: an update. Eur J Pain. 2003;7:345–351. doi:10.1016/S1090-3801(03)00047-8
    1. Calvillo O. Primary afferent depolarization of C fibres in the spinal cord of the cat. Can J Physiol Pharmacol. 1978;56:154–157. doi:10.1139/y78-020
    1. Lin T, Gargya A, Singh H, et al. Mechanism of peripheral nerve stimulation in chronic pain. Pain Med. 2020;21:S6–S12. doi:10.1093/pm/pnaa164
    1. Chakravarthy K, Nava A, Christo PJ, et al. Review of recent advances in peripheral nerve stimulation (PNS). Curr Pain Headache Rep. 2016;20:60. doi:10.1007/s11916-016-0590-8
    1. Bartsch T, Goadsby PJ. Central mechanisms of peripheral nerve stimulation in headache disorders. In: Slavin KV, editor. Peripheral Nerve Stimulation. Karger Publishers; 2011:16–26.
    1. Gielen F, Molnar G. Basic principles of deep brain stimulation. In: Denys D, Feenstra M, Schuurman R, eds. Deep Brain Stimulation. Springer; 2012:1–10.
    1. Brocker DT, Grill WM. Principles of electrical stimulation of neural tissue. In: Lozano AM, Hallett M, eds. Handbook of Clinical Neurology. Elsevier; 2013:3–18.
    1. Parker JL, Karantonis DM, Single PS, et al. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain. 2012;153:593–601. doi:10.1016/j.pain.2011.11.023
    1. Feirabend H, Choufoer H, Ploeger S, et al. Morphometry of human superficial dorsal and dorsolateral column fibres: significance to spinal cord stimulation. Brain. 2002;125:1137–1149. doi:10.1093/brain/awf111
    1. Yang F, Carteret AF, Wacnik PW, et al. Bipolar spinal cord stimulation attenuates mechanical hypersensitivity at an intensity that activates a small portion of A-fiber afferents in spinal nerve-injured rats. Neuroscience. 2011;199:470–480. doi:10.1016/j.neuroscience.2011.09.049
    1. Molnar G, Barolat G. Principles of cord activation during spinal cord stimulation. Neuromodulation. 2014;17(Suppl 1):12–21. doi:10.1111/ner.12171
    1. Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 2002;5:25–31. doi:10.1046/j.1525-1403.2002._2005.x
    1. Gaines JL, Finn KE, Slopsema JP, et al. A model of motor and sensory axon activation in the median nerve using surface electrical stimulation. J Comput Neurosci. 2018;45:29–43. doi:10.1007/s10827-018-0689-5
    1. Rattay F, Paredes L, Leao R. Strength–duration relationship for intra-versus extracellular stimulation with microelectrodes. Neuroscience. 2012;214:1–13. doi:10.1016/j.neuroscience.2012.04.004
    1. Li J, Kong X, Gozani SN, et al. Current-distance relationships for peripheral nerve stimulation localization. Anesth Analg. 2011;112:236–241. doi:10.1213/ANE.0b013e3181fca16b
    1. Wilson RD, Knutson JS, Bennett ME, et al. The effect of peripheral nerve stimulation on shoulder biomechanics: a randomized controlled trial in comparison to physical therapy. Am J Phys Med Rehabil. 2017;96:191–198. doi:10.1097/PHM.0000000000000677
    1. Lidierth M. Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord. J Physiol. 2006;576:309–327. doi:10.1113/jphysiol.2006.110577
    1. Dorfman LJ. The distribution of conduction velocities (DCV) in peripheral nerves: a review. Muscle Nerve. 1984;7:2–11. doi:10.1002/mus.880070103
    1. Huntoon MA, Burgher AH. Review of ultrasound-guided peripheral nerve stimulation. Tech Reg Anesth Pain Manag. 2009;13:121–127. doi:10.1053/j.trap.2009.06.018
    1. Law JD, Swett J, Kirsch WM. Retrospective analysis of 22 patients with chronic pain treated by peripheral nerve stimulation. J Neurosurg. 1980;52:482. doi:10.3171/jns.1980.52.4.0482
    1. Ellrich J, Lamp S. Peripheral nerve stimulation inhibits nociceptive processing: an electrophysiological study in healthy volunteers. Neuromodulation. 2005;8:225–232. doi:10.1111/j.1525-1403.2005.00029.x
    1. Ristic D, Spangenberg P, Ellrich J. Analgesic and antinociceptive effects of peripheral nerve neurostimulation in an advanced human experimental model. Eur J Pain. 2008;12:480–490. doi:10.1016/j.ejpain.2007.07.013
    1. Ristic D, Ellrich J. Innocuous peripheral nerve stimulation shifts stimulus-response function of painful laser stimulation in man. Neuromodulation. 2014;17:686–694; discussion 694–685. doi:10.1111/ner.12133
    1. De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation. 2016;19:47–59. doi:10.1111/ner.12368
    1. Stancak A, Kozak J, Vrba I, et al. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur J Pain. 2008;12:137–148. doi:10.1016/j.ejpain.2007.03.003
    1. Urien L, Wang J. Top-down cortical control of acute and chronic pain. Psychosom Med. 2019;81:851–858. doi:10.1097/PSY.0000000000000744
    1. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–186. doi:10.1146/annurev.neuro.21.1.149
    1. Jenkins WM, Merzenich MM, Ochs MT, et al. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol. 1990;63:82–104. doi:10.1152/jn.1990.63.1.82
    1. Byl NN, Merzenich MM, Cheung S, et al. A primate model for studying focal dystonia and repetitive strain injury: effects on the primary somatosensory cortex. Phys Ther. 1997;77:269–284. doi:10.1093/ptj/77.3.269
    1. Gustin SM, Peck CC, Cheney LB, et al. Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci. 2012;32:14874–14884. doi:10.1523/JNEUROSCI.1733-12.2012
    1. Tecchio F, Padua L, Aprile I, et al. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp. 2002;17:28–36. doi:10.1002/hbm.10049
    1. Preißler S, Dietrich C, Meissner W, et al. Brachial plexus block in phantom limb pain: a case report. Pain Med. 2011;12:1649–1654. doi:10.1111/j.1526-4637.2011.01247.x
    1. De Nunzio AM, Schweisfurth MA, Ge N, et al. Relieving phantom limb pain with multimodal sensory-motor training. J Neural Eng. 2018;15:066022. doi:10.1088/1741-2552/aae271
    1. Flor H, Denke C, Schaefer M, et al. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet. 2001;357:1763–1764. doi:10.1016/S0140-6736(00)04890-X
    1. Hummel FC, Cohen LG. Drivers of brain plasticity. Curr Opin Neurol. 2005;18:667–674. doi:10.1097/01.wco.0000189876.37475.42
    1. Wu CW, van Gelderen P, Hanakawa T, et al. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27:872–884. doi:10.1016/j.neuroimage.2005.05.055
    1. Deer TR, Levy RM, Kramer J, et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial. Pain. 2017;158:669–681. doi:10.1097/j.pain.0000000000000814
    1. Graham RD, Bruns TM, Duan B, et al. Dorsal root ganglion stimulation for chronic pain modulates Abeta-fiber activity but not C-fiber activity: a computational modeling study. Clin Neurophysiol. 2019;130:941–951. doi:10.1016/j.clinph.2019.02.016
    1. Sperry ZJ, Graham RD, Peck-Dimit N, et al. Spatial models of cell distribution in human lumbar dorsal root ganglia. J Comp Neurol. 2020;528(10):1644–1659. doi:10.1002/cne.24848
    1. Kent AR, Min X, Hogan QH, et al. Mechanisms of dorsal root ganglion stimulation in pain suppression: a computational modeling analysis. Neuromodulation. 2018;21:234–246. doi:10.1111/ner.12754
    1. Wang X, Merzenich MM, Sameshima K, et al. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature. 1995;378:71. doi:10.1038/378071a0
    1. Nikolajsen L, Jensen TS. Phantom limb pain. Br J Anaesth. 2001;87:107–116. doi:10.1093/bja/87.1.107
    1. Neil M. Pain after amputation. BJA Educ. 2016;16:107–112. doi:10.1093/bjaed/mkv028
    1. Hsu E, Cohen SP. Postamputation pain: epidemiology, mechanisms, and treatment. J Pain Res. 2013;6:121–136. doi:10.2147/JPR.S32299
    1. Flor H, Nikolajsen L, Staehelin jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci. 2006;7:873–881. doi:10.1038/nrn1991
    1. Nikolajsen L. Postamputation pain: studies on mechanisms. Dan Med J. 2012;59.
    1. Van Calenbergh F, Gybels J, Van Laere K, et al. Long term clinical outcome of peripheral nerve stimulation in patients with chronic peripheral neuropathic pain. Surg Neurol. 2009;72:330–335. doi:10.1016/j.surneu.2009.03.006
    1. Krainick J-U, Thoden U, Riechert T. Pain reduction in amputees by long-term spinal cord stimulation: long-term follow-up study over 5 years. J Neurosurg. 1980;52:346–350. doi:10.3171/jns.1980.52.3.0346
    1. Kalichman L, Ratmansky M. Underlying pathology and associated factors of hemiplegic shoulder pain. Am J Phys Med Rehabil. 2011;90:768–780. doi:10.1097/PHM.0b013e318214e976
    1. Griffin JW. Hemiplegic shoulder pain. Phys Ther. 1986;66:1884–1893. doi:10.1093/ptj/66.12.1884
    1. Walsh K. Management of shoulder pain in patients with stroke. Postgrad Med J. 2001;77:645–649. doi:10.1136/pmj.77.912.645
    1. Roosink M, Renzenbrink GJ, Buitenweg JR, et al. Somatosensory symptoms and signs and conditioned pain modulation in chronic post-stroke shoulder pain. J Pain. 2011;12:476–485. doi:10.1016/j.jpain.2010.10.009
    1. Soo Hoo J, Paul T, Chae J, et al. Central hypersensitivity in chronic hemiplegic shoulder pain. Am J Phys Med Rehabil. 2013;92:1–9; quiz 10–13. doi:10.1097/PHM.0b013e31827df862
    1. Roosink M, Renzenbrink GJ, Buitenweg JR, et al. Persistent shoulder pain in the first 6 months after stroke: results of a prospective cohort study. Arch Phys Med Rehabil. 2011;92:1139–1145. doi:10.1016/j.apmr.2011.02.016
    1. Roosink M, van Dongen RT, Renzenbrink GJ, et al. Classifying post-stroke shoulder pain: can the DN4 be helpful? Eur J Pain. 2011;15:99–102. doi:10.1016/j.ejpain.2010.05.012
    1. Roosink M, Buitenweg JR, Renzenbrink GJ, et al. Altered cortical somatosensory processing in chronic stroke: a relationship with post-stroke shoulder pain. Neurorehabil. 2011;28:331–344. doi:10.3233/NRE-2011-0661
    1. Freburger JK, Holmes GM, Agans RP, et al. The rising prevalence of chronic low back pain. Arch Intern Med. 2009;169:251–258. doi:10.1001/archinternmed.2008.543
    1. Johannes CB, Le TK, Zhou X, et al. The prevalence of chronic pain in United States adults: results of an internet-based survey. J Pain. 2010;11:1230–1239. doi:10.1016/j.jpain.2010.07.002

Source: PubMed

3
Subscribe