Dapagliflozin attenuates hypoxia/reoxygenation-caused cardiac dysfunction and oxidative damage through modulation of AMPK

Kun-Ling Tsai, Pei-Ling Hsieh, Wan-Ching Chou, Hui-Ching Cheng, Yu-Ting Huang, Shih-Hung Chan, Kun-Ling Tsai, Pei-Ling Hsieh, Wan-Ching Chou, Hui-Ching Cheng, Yu-Ting Huang, Shih-Hung Chan

Abstract

Background: Emerging evidence demonstrated dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, prevented various cardiovascular events. However, the detailed mechanisms underlying its cardioprotective properties remained largely unknown.

Results: In the present study, we sought to investigate the effects of DAPA on the cardiac ischemia/reperfusion (I/R) injury. Results from in vitro experiments showed that DAPA induced the phosphorylation of AMPK, resulting in the downregulation of PKC in the cardiac myoblast H9c2 cells following hypoxia/reoxygenation (H/R) condition. We demonstrated that DAPA treatment diminished the H/R-elicited oxidative stress via the AMPK/ PKC/ NADPH oxidase pathway. In addition, DAPA prevented the H/R-induced abnormality of PGC-1α expression, mitochondrial membrane potential, and mitochondrial DNA copy number through AMPK/ PKC/ NADPH oxidase signaling. Besides, DAPA reversed the H/R-induced apoptosis. Furthermore, we demonstrated that DAPA improved the I/R-induced cardiac dysfunction by echocardiography and abrogated the I/R-elicited apoptosis in the myocardium of rats. Also, the administration of DAPA mitigated the production of myocardial infarction markers.

Conclusions: In conclusion, our data suggested that DAPA treatment holds the potential to ameliorate the I/R-elicited oxidative stress and the following cardiac apoptosis via modulation of AMPK, which attenuates the cardiac dysfunction caused by I/R injury.

Keywords: AMPK; Dapagliflozin; Ischemia/reperfusion injury.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Administration of dapagliflozin (DAPA) increases the phosphorylation of AMPK and suppresses the phosphorylation of PKC under hypoxia/reoxygenation condition. The expression levels of phosphorylated AMPK in H9c2 cells treated with DAPA were enhanced in dose-dependent (a, b) and time-dependent (c, d) manners. Representative Western blot images (e) and relative densitometric bar graphs of phosphorylated-AMPK/AMPK (f) and phosphorylated-PKC/PKC (g) in H9c2 cells exposed to hypoxia for 1 h and reoxygenation for 4 h (H1R4) were shown. The data were presented as the mean ± SD of three biological replicates at three separate times. Representative Western blot image (h) and protein expression levels of phosphorylated-AMPK, AMPK, phosphorylated-PKC, and PKC in ventricular tissue from sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals, eight animals in each group, were shown (i, j). (* indicating p < 0.05 compared with the control group; # indicating p < 0.05 compared to H1R4 condition or I/R without DAPA treatment)
Fig. 2
Fig. 2
Dapagliflozin (DAPA) prevents the upregulation of ROS via AMPK/ PKC/ NADPH oxidase signaling. Representative Western blot images (a) and relative densitometric bar graphs of Nox-2/Na/K ATPase (b) and Rac-1/Na/K ATPase (c) in H9c2 cells exposed to hypoxia for 1 h and reoxygenation for 4 h (H1R4) were shown. Protein expression levels of Nox-2 and β-actin in ventricular tissue from sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals (d, e), eight animals in each group, were examined. Activity of NADPH oxidase in H9c2 cells (f) and primary cardiomyocytes (g) was measured. ROS generation was measured using a flow cytometry to examine the fluorescent intensity of H9c2 cells (h) and primary cardiomyocytes (i). For in vitro experiments, the data were presented as the mean ± SD of three biological replicates at three separate times. (* indicating p < 0.05 compared with the control group; # indicating p < 0.05 compared to H1R4 condition or I/R without DAPA treatment; & indicating p < 0.05 compared with the DAPA-treated cells in H1R4 condition)
Fig. 3
Fig. 3
Dapagliflozin (DAPA) prevents hypoxia/reoxygenation-induced PGC-1α downregulation and dysfunction of mitochondrial biogenesis. Representative Western blot images (a) and relative densitometric bar graphs (b) of PGC-1α/β-actin in H9c2 cells exposed to hypoxia for 1 h and reoxygenation for 4 hr (H1R4) were shown. In some cases, cells were transfected with AMPK siRNA 48 hr or pretreated with DPI before exposure to hypoxia/reoxygenation. Representative Western blot images (c) and protein expression levels of PGC-1α and β-actin in ventricular tissue from sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals (d), eight animals in each group, were shown. Percentage of cells expressing JC-1 monomers (green fluorescence; FL1) (e) and JC-1 aggregates (red fluorescence; FL2) (f) were assessed using flow cytometry. Mitochondrial DNA copy numbers were examined after stimulation of hypoxia/reoxygenation in H9c2 cells (g) and primary cardiomyocytes (h). Mitochondrial DNA copy numbers in ventricular tissue from sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals, eight animals in each gruop, were measured (i). For in vitro experiments, the data were presented as the mean ± SD of three biological replicates at three separate times. (* indicating p < 0.05 compared with the control group; # indicating p < 0.05 compared to H1R4 condition or I/R without DAPA treatment; & indicating p < 0.05 compared with the DAPA-treated cells in H1R4 condition)
Fig. 4
Fig. 4
Dapagliflozin (DAPA) prevents hypoxia/reoxygenation-induced apoptosis through AMPK-modulated mitochondrial-dependent pathway. Representative Western blot images (a) and relative densitometric bar graphs (be) of mitochondrial-dependent apoptotic markers in H9c2 cells exposed to hypoxia for 1 h and reoxygenation for 4 h (H1R4) were shown. Antiapoptotic effect of DAPA was further confirmed by caspase 3 activity (f). TUNEL assay was used for investigating apoptotic cells in H9c2 cells (g) and primary cardiomyocytes (h). The data were presented as the mean ± SD of three biological replicates at three separate times (* indicating p < 0.05 compared with the control group; # indicting p < 0.05 compared to H1R4 condition without DAPA treatment; & indicating p < 0.05 compared the DAPA-treated cells in H1R4 condition)
Fig. 5
Fig. 5
Dapagliflozin (DAPA) protects heart function on ischemia/reperfusion injury. Measurement in echocardiography, including (a) ejection fraction (EF), (b) fractional shortening (FS), (c) left ventricular end-diastolic volume (LV Vol d), (d) left ventricular end-systolic volume (LV Vol s), (e) left ventricular internal dimension at end-diastole (LVIDd), and (f) left ventricular internal dimension at end-systole (LVIDs), were shown. (g) Representative echocardiographic M-mode images from animals in different conditions revealed reduced motion of anterior wall of left ventricle caused by ischemia/reperfusion (I/R) (middle panel), which was attenuated by DAPA treatment (lower panel). Red arrows indicate the motion of anterior wall of left ventricle. The data were presented as the mean ± SD in sham control, ischemia/reperfusion (I/R), and I/R plus DAPA treatment animals, eight animals in each group (* indicating p < 0.05 compared with the control group; # indicating p < 0.05 compared to I/R without DAPA treatment)
Fig. 6
Fig. 6
Anti-apoptotic effect of dapagliflozin (DAPA) on ischemia/reperfusion injured animals. Representative images of TUNEL staining of the cardiac tissues (a) and quantification of the apoptotic areas (b) were shown. The plasma concentration of myocardial damage markers, lactate dehydrogenase (LDH) (c) and creatine kinase-MB (CK-MB) (d), in control animals and ischemia/reperfusion (I/R) animals with or without DAPA treatment were checked. The data were presented as the mean ± SD of eight animals in each group. (* indicating p < 0.05 compared with the control group; # indicating p < 0.05 compared to I/R without DAPA treatment)
Fig. 7
Fig. 7
Schematic diagram showing protective signaling of dapagliflozin (DAPA) on ischemia/reperfusion-caused cardiac dysfunction

References

    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
    1. Fournier JA, Cabezón S, Cayuela A, Ballesteros SM, Cortacero JA, De La DíazLlera LS. Long-term prognosis of patients having acute myocardial infarction when ≤ 40 years of age. Am J Cardiol. 2004;94(8):989–992. doi: 10.1016/j.amjcard.2004.06.051.
    1. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–140. doi: 10.1016/j.jacc.2012.11.019.
    1. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2:702–14. doi: 10.1016/j.redox.2014.05.006.
    1. Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, Raissi TC, Pause A, St-Pierre J, Jones RG. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep. 2017;21(1):1–9. doi: 10.1016/j.celrep.2017.09.026.
    1. Russell RR, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004;114(4):495–503. doi: 10.1172/JCI19297.
    1. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH. A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol. 2011;51(1):24–32. doi: 10.1016/j.yjmcc.2011.03.003.
    1. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61(10):2098–107. doi: 10.1007/s00125-018-4669-0.
    1. Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RHM, Kuder J, Murphy SA, Bhatt DL, Leiter LA, et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation. 2019;139(22):2528–36. doi: 10.1161/CIRCULATIONAHA.119.040130.
    1. Kaplinsky E. DAPA-HF trial: dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure. Drugs Context. 2020;9:11–13. doi: 10.7573/dic.2019-11-3.
    1. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. doi: 10.1056/NEJMoa1812389.
    1. Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, Kuder J, Murphy SA, Bhatt DL, Leiter LA, et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation. 2019;139(22):2516–27. doi: 10.1161/CIRCULATIONAHA.119.039996.
    1. Han Y, Cho YE, Ayon R, Guo R, Youssef KD, Pan M, Dai A, Yuan JX, Makino A. SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L1027–36. doi: 10.1152/ajplung.00167.2015.
    1. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32. doi: 10.1007/s10557-017-6725-2.
    1. Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta. 2015;1853(2):276–84. doi: 10.1016/j.bbamcr.2014.11.015.
    1. Kong SS, Liu JJ, Yu XJ, Lu Y, Zang WJ. Protection against ischemia-induced oxidative stress conferred by vagal stimulation in the rat heart: involvement of the AMPK-PKC pathway. Int J Mol Sci. 2012;13(11):14311–25. doi: 10.3390/ijms131114311.
    1. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35. doi: 10.1056/NEJMra071667.
    1. Akki A, Zhang M, Murdoch C, Brewer A, Shah AM. NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol. 2009;47(1):15–22. doi: 10.1016/j.yjmcc.2009.04.004.
    1. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408. doi: 10.1016/j.cell.2006.09.024.
    1. Kaplan A, Abidi E, El-Yazbi A, Eid A, Booz GW, Zouein FA. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail Rev. 2018;23(3):419–37. doi: 10.1007/s10741-017-9665-9.
    1. Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW, Coronel R, Weber NC, Zuurbier CJ. Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol. 2018;9:1575. doi: 10.3389/fphys.2018.01575.
    1. Tanaka H, Soga F, Tatsumi K, Mochizuki Y, Sano H, Toki H, Matsumoto K, Shite J, Takaoka H, Doi T, et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc Diabetol. 2020;19(1):6. doi: 10.1186/s12933-019-0985-z.
    1. Lahnwong S, Palee S, Apaijai N, Sriwichaiin S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc Diabetol. 2020;19(1):91. doi: 10.1186/s12933-020-01066-9.
    1. Hamouda NN, Sydorenko V, Qureshi MA, Alkaabi JM, Oz M, Howarth FC. Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015;400(1–2):57–68. doi: 10.1007/s11010-014-2262-5.
    1. Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, Jancev M, Hollmann MW, Weber NC, Coronel R, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia. 2018;61(3):722–6. doi: 10.1007/s00125-017-4509-7.
    1. ten Hove M, van Emous JG, van Echteld CJ. Na + overload during ischemia and reperfusion in rat hearts: comparison of the Na+/H + exchange blockers EIPA, cariporide and eniporide. Mol Cell Biochem. 2003;250(1–2):47–54. doi: 10.1023/A:1024985931797.
    1. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol. 2018;17(1):144. doi: 10.1186/s12933-018-0790-0.
    1. Higgins L, Palee S, Chattipakorn SC, Chattipakorn N. Effects of metformin on the heart with ischaemia-reperfusion injury: Evidence of its benefits from in vitro, in vivo and clinical reports. Eur J Pharmacol. 2019;858:172489. doi: 10.1016/j.ejphar.2019.172489.
    1. Frilling B, Schiele R, Gitt AK, Zahn R, Schneider S, Glunz HG, Gieseler U, Jagodzinski E, Senges J. Too little aspirin for secondary prevention after acute myocardial infarction in patients at high risk for cardiovascular events: results from the MITRA study. Am Heart J. 2004;148(2):306–11. doi: 10.1016/j.ahj.2004.01.027.
    1. Verheugt FW, van der Laarse A, Funke-Küpper AJ, Sterkman LG, Galema TW, Roos JP. Effects of early intervention with low-dose aspirin (100 mg) on infarct size, reinfarction and mortality in anterior wall acute myocardial infarction. The American journal of cardiology. 1990;66(3):267–70. doi: 10.1016/0002-9149(90)90833-M.
    1. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017–22. doi: 10.1073/pnas.0705070104.
    1. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101. doi: 10.1371/journal.pbio.0030101.
    1. Sun L, Zhao M, Yu XJ, Wang H, He X, Liu JK, Zang WJ. Cardioprotection by acetylcholine: a novel mechanism via mitochondrial biogenesis and function involving the PGC-1α pathway. J Cell Physiol. 2013;228(6):1238–48. doi: 10.1002/jcp.24277.
    1. Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM. Chronic metformin associated cardioprotection against infarction: not just a glucose lowering phenomenon. Cardiovasc Drugs Ther. 2013;27(1):5–16. doi: 10.1007/s10557-012-6425-x.
    1. Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B, Spreux-Varoquaux O, Tortosa F, et al. p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal. 2013;18(1):5–18. doi: 10.1089/ars.2011.4373.
    1. Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol. 2009;297(1):C217–25. doi: 10.1152/ajpcell.00070.2009.
    1. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55(1):120–7. doi: 10.2337/diabetes.55.01.06.db05-0943.
    1. Xie Z, Zhang J, Wu J, Viollet B, Zou MH. Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes. 2008;57(12):3222–30. doi: 10.2337/db08-0610.
    1. Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quinderé AL, Montessuit C, Krause KH, et al. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol. 2013;64:99–107. doi: 10.1016/j.yjmcc.2013.09.007.
    1. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27(12):2627–33. doi: 10.1161/ATVBAHA.107.155762.
    1. Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Behets-Wydemans G, Tajeddine N, Castanares-Zapatero D, Gilon P, Vanoverschelde JL, Horman S, et al. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am J Physiol Heart Circ Physiol. 2014;307(8):H1120–33. doi: 10.1152/ajpheart.00210.2014.
    1. Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, Viollet B, Yan D, Zou MH. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res. 2010;106(6):1117–28. doi: 10.1161/CIRCRESAHA.109.212530.
    1. Hussein AM, Eid EA, Taha M, Elshazli RM, Bedir RF, Lashin LS. Comparative study of the effects of GLP1 analog and SGLT2 inhibitor against diabetic cardiomyopathy in type 2 diabetic rats: possible underlying mechanisms. Biomedicines. 2020;8(3):43. doi: 10.3390/biomedicines8030043.

Source: PubMed

3
Subscribe